Test results for the 48 problems in " $6.2 .1(c+d x)^{\wedge} m(a+b$ cosh) $n . t x t "$
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{4} \cosh (b x+a) d x
$$

Optimal(type 3, 91 leaves, 5 steps):

$$
-\frac{24 d^{3}(d x+c) \cosh (b x+a)}{b^{4}}-\frac{4 d(d x+c)^{3} \cosh (b x+a)}{b^{2}}+\frac{24 d^{4} \sinh (b x+a)}{b^{5}}+\frac{12 d^{2}(d x+c)^{2} \sinh (b x+a)}{b^{3}}+\frac{(d x+c)^{4} \sinh (b x+a)}{b}
$$

Result(type 3, 546 leaves):
$\frac{1}{b}\left(c^{4} \sinh (b x+a)-\frac{12 d^{3} a c\left((b x+a)^{2} \sinh (b x+a)-2(b x+a) \cosh (b x+a)+2 \sinh (b x+a)\right)}{b^{3}}\right.$

$$
\begin{aligned}
& +\frac{12 d^{3} a^{2} c((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b^{3}}-\frac{12 d^{2} a c^{2}((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b^{2}} \\
& +\frac{d^{4}\left((b x+a)^{4} \sinh (b x+a)-4(b x+a)^{3} \cosh (b x+a)+12(b x+a)^{2} \sinh (b x+a)-24(b x+a) \cosh (b x+a)+24 \sinh (b x+a)\right)}{b^{4}} \\
& +\frac{d^{4} a^{4} \sinh (b x+a)}{b^{4}}-\frac{4 d^{3} a^{3} c \sinh (b x+a)}{b^{3}}+\frac{6 d^{2} a^{2} c^{2} \sinh (b x+a)}{b^{2}}-\frac{4 d a c^{3} \sinh (b x+a)}{b} \\
& -\frac{4 d^{4} a\left((b x+a)^{3} \sinh (b x+a)-3(b x+a)^{2} \cosh (b x+a)+6(b x+a) \sinh (b x+a)-6 \cosh (b x+a)\right)}{b^{4}} \\
& +\frac{4 d^{3} c\left((b x+a)^{3} \sinh (b x+a)-3(b x+a)^{2} \cosh (b x+a)+6(b x+a) \sinh (b x+a)-6 \cosh (b x+a)\right)}{b^{3}} \\
& +\frac{6 d^{4} a^{2}\left((b x+a)^{2} \sinh (b x+a)-2(b x+a) \cosh (b x+a)+2 \sinh (b x+a)\right)}{b^{4}} \\
& +\frac{6 d^{2} c^{2}\left((b x+a)^{2} \sinh (b x+a)-2(b x+a) \cosh (b x+a)+2 \sinh (b x+a)\right)}{b^{2}}-\frac{4 d^{4} a^{3}((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b^{4}} \\
& \left.+\frac{4 d c^{3}((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b}\right)
\end{aligned}
$$

Problem 2: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \cosh (b x+a) \mathrm{d} x
$$

Optimal(type 3, 49 leaves, 3 steps):

$$
-\frac{2 d(d x+c) \cosh (b x+a)}{b^{2}}+\frac{2 d^{2} \sinh (b x+a)}{b^{3}}+\frac{(d x+c)^{2} \sinh (b x+a)}{b}
$$

Result(type 3, 146 leaves):
$\frac{1}{b}\left(\frac{d^{2}\left((b x+a)^{2} \sinh (b x+a)-2(b x+a) \cosh (b x+a)+2 \sinh (b x+a)\right)}{b^{2}}-\frac{2 d^{2} a((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b^{2}}\right.$

$$
\left.+\frac{2 d c((b x+a) \sinh (b x+a)-\cosh (b x+a))}{b}+\frac{d^{2} a^{2} \sinh (b x+a)}{b^{2}}-\frac{2 d a c \sinh (b x+a)}{b}+c^{2} \sinh (b x+a)\right)
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (b x+a)}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 96 leaves, 5 steps):

$$
\frac{b^{2} \operatorname{Chi}\left(\frac{b c}{d}+b x\right) \cosh \left(a-\frac{b c}{d}\right)}{2 d^{3}}-\frac{\cosh (b x+a)}{2 d(d x+c)^{2}}+\frac{b^{2} \operatorname{Shi}\left(\frac{b c}{d}+b x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 d^{3}}-\frac{b \sinh (b x+a)}{2 d^{2}(d x+c)}
$$

Result(type 4, 276 leaves):

$$
\begin{aligned}
& \frac{b^{3} \mathrm{e}^{-b x-a} x}{4 d\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}+\frac{b^{3} \mathrm{e}^{-b x-a} c}{4 d^{2}\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}-\frac{b^{2} \mathrm{e}^{-b x-a}}{4 d\left(b^{2} d^{2} x^{2}+2 b^{2} c d x+c^{2} b^{2}\right)}-\frac{b^{2} \mathrm{e}^{-\frac{d a-c b}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{d a-c b}{d}\right)}{4 d^{3}} \\
& -\frac{b^{2} \mathrm{e}^{b x+a}}{4 d^{3}\left(\frac{b c}{d}+b x\right)^{2}}-\frac{b^{2} \mathrm{e}^{b x+a}}{4 d^{3}\left(\frac{b c}{d}+b x\right)}-\frac{b^{2} \mathrm{e}^{\frac{d a-c b}{d}} \operatorname{Ei}_{1}\left(-b x-a-\frac{-d a+c b}{d}\right)}{4 d^{3}}
\end{aligned}
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 3, 85 leaves, 4 steps):

$$
\frac{d^{2} x}{4 b^{2}}+\frac{(d x+c)^{3}}{6 d}-\frac{d(d x+c) \cosh (b x+a)^{2}}{2 b^{2}}+\frac{d^{2} \cosh (b x+a) \sinh (b x+a)}{4 b^{3}}+\frac{(d x+c)^{2} \cosh (b x+a) \sinh (b x+a)}{2 b}
$$

Result(type 3, 261 leaves):
$\frac{1}{b}\left(\frac{d^{2}\left(\frac{(b x+a)^{2} \cosh (b x+a) \sinh (b x+a)}{2}+\frac{(b x+a)^{3}}{6}-\frac{(b x+a) \cosh (b x+a)^{2}}{2}+\frac{\cosh (b x+a) \sinh (b x+a)}{4}+\frac{b x}{4}+\frac{a}{4}\right)}{b^{2}}\right.$
$-\frac{2 d^{2} a\left(\frac{(b x+a) \cosh (b x+a) \sinh (b x+a)}{2}+\frac{(b x+a)^{2}}{4}-\frac{\cosh (b x+a)^{2}}{4}\right)}{b^{2}}$

$\left.-\frac{2 d a c\left(\frac{\cosh (b x+a) \sinh (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)}{b}+c^{2}\left(\frac{\cosh (b x+a) \sinh (b x+a)}{2}+\frac{b x}{2}+\frac{a}{2}\right)\right)$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (b x+a)^{2}}{(d x+c)^{4}} \mathrm{~d} x
$$

Optimal(type 4, 150 leaves, 7 steps):
$\frac{b^{2}}{3 d^{3}(d x+c)}-\frac{\cosh (b x+a)^{2}}{3 d(d x+c)^{3}}-\frac{2 b^{2} \cosh (b x+a)^{2}}{3 d^{3}(d x+c)}+\frac{2 b^{3} \cosh \left(2 a-\frac{2 b c}{d}\right) \operatorname{Shi}\left(\frac{2 b c}{d}+2 b x\right)}{3 d^{4}}+\frac{2 b^{3} \operatorname{Chi}\left(\frac{2 b c}{d}+2 b x\right) \sinh \left(2 a-\frac{2 b c}{d}\right)}{3 d^{4}}$

$$
-\frac{b \cosh (b x+a) \sinh (b x+a)}{3 d^{2}(d x+c)^{2}}
$$

Result(type 4, 554 leaves):

$$
\begin{aligned}
& -\frac{1}{6 d(d x+c)^{3}}-\frac{b^{5} \mathrm{e}^{-2 b x-2 a} x^{2}}{6 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}-\frac{b^{5} \mathrm{e}^{-2 b x-2 a} c x}{3 d^{2}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& -\frac{b^{5} \mathrm{e}^{-2 b x-2 a} c^{2}}{6 d^{3}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}+\frac{b^{4} \mathrm{e}^{-2 b x-2 a} x}{12 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& +\frac{b^{4} \mathrm{e}^{-2 b x-2 a c}}{12 d^{2}\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)}-\frac{b^{3} \mathrm{e}^{-2 b x-2 a}}{12 d\left(b^{3} d^{3} x^{3}+3 b^{3} c d^{2} x^{2}+3 b^{3} c^{2} d x+b^{3} c^{3}\right)} \\
& \\
& +\frac{b^{3} \mathrm{e}^{-\frac{2(d a-c b)}{d}} \operatorname{Ei}_{1}\left(2 b x+2 a-\frac{2(d a-c b)}{d}\right)}{3 d^{4}} \\
& -\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{12 d^{4}\left(\frac{b c}{d}+b x\right)^{3}}-\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{12 d^{4}\left(\frac{b c}{d}+b x\right)^{2}}-\frac{b^{3} \mathrm{e}^{2 b x+2 a}}{6 d^{4}\left(\frac{b c}{d}+b x\right)}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{4} \cosh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 205 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{160 d^{3}(d x+c) \cosh (b x+a)}{9 b^{4}}-\frac{8 d(d x+c)^{3} \cosh (b x+a)}{3 b^{2}}-\frac{8 d^{3}(d x+c) \cosh (b x+a)^{3}}{27 b^{4}}-\frac{4 d(d x+c)^{3} \cosh (b x+a)^{3}}{9 b^{2}}+\frac{488 d^{4} \sinh (b x+a)}{27 b^{5}} \\
& +\frac{80 d^{2}(d x+c)^{2} \sinh (b x+a)}{9 b^{3}}+\frac{2(d x+c)^{4} \sinh (b x+a)}{3 b}+\frac{4 d^{2}(d x+c)^{2} \cosh (b x+a)^{2} \sinh (b x+a)}{9 b^{3}} \\
& +\frac{(d x+c)^{4} \cosh (b x+a)^{2} \sinh (b x+a)}{3 b}+\frac{8 d^{4} \sinh (b x+a)^{3}}{81 b^{5}} \\
& \text { Result(type 3, } 1216 \text { leaves): } \\
& \frac{1}{b}\left(\frac { 1 } { b ^ { 4 } } \left(d ^ { 4 } \left(\frac{2(b x+a)^{4} \sinh (b x+a)}{3}+\frac{(b x+a)^{4} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{28(b x+a)^{3} \cosh (b x+a)}{9}+\frac{80(b x+a)^{2} \sinh (b x+a)}{9}\right.\right.\right. \\
& -\frac{488(b x+a) \cosh (b x+a)}{27}+\frac{1456 \sinh (b x+a)}{81}-\frac{4(b x+a)^{3} \sinh (b x+a)^{2} \cosh (b x+a)}{9}+\frac{4(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{9} \\
& \left.\left.-\frac{8(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{27}+\frac{8 \cosh (b x+a)^{2} \sinh (b x+a)}{81}\right)\right)-\frac{1}{b^{4}}\left(4 d ^ { 4 } a \left(\frac{2(b x+a)^{3} \sinh (b x+a)}{3}\right.\right. \\
& +\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7(b x+a)^{2} \cosh (b x+a)}{3}+\frac{40(b x+a) \sinh (b x+a)}{9}-\frac{122 \cosh (b x+a)}{27} \\
& \left.\left.-\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}-\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}\right)\right) \\
& +\frac{1}{b^{4}}\left(6 d ^ { 4 } a ^ { 2 } \left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}\right.\right. \\
& \left.\left.-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}+\frac{40 \sinh (b x+a)}{27}\right)\right) \\
& -\frac{4 d^{4} a^{3}\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{4}} \\
& +\frac{d^{4} a^{4}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{4}}+\frac{1}{b^{3}}\left(4 c d ^ { 3 } \left(\frac{2(b x+a)^{3} \sinh (b x+a)}{3}+\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{3}\right.\right. \\
& -\frac{7(b x+a)^{2} \cosh (b x+a)}{3}+\frac{40(b x+a) \sinh (b x+a)}{9}-\frac{122 \cosh (b x+a)}{27}-\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}-\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}\right)\right)-\frac{1}{b^{3}}\left(1 2 c d ^ { 3 } a \left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}\right.\right. \\
& +\frac{2(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27} \\
& \left.\left.+\frac{40 \sinh (b x+a)}{27}\right)\right) \\
& +\frac{12 c d^{3} a^{2}\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{3}} \\
& -\frac{4 c d^{3} a^{3}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{3}}+\frac{1}{b^{2}\left(6 c ^ { 2 } d ^ { 2 } \left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a)^{2} \sinh (b x+a)}{3}\right.\right.} \\
& \left.\left.-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}+\frac{40 \sinh (b x+a)}{27}\right)\right) \\
& -\frac{12 c^{2} d^{2} a\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{2}} \\
& +\frac{6 c^{2} d^{2} a^{2}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{2}} \\
& +\frac{4 c^{3} d\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{9} \\
& +\frac{4 c^{3} d a\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b}+c^{4}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \operatorname{sinh(bx+a))}
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \cosh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 161 leaves, 8 steps):
$-\frac{40 d^{3} \cosh (b x+a)}{9 b^{4}}-\frac{2 d(d x+c)^{2} \cosh (b x+a)}{b^{2}}-\frac{2 d^{3} \cosh (b x+a)^{3}}{27 b^{4}}-\frac{d(d x+c)^{2} \cosh (b x+a)^{3}}{3 b^{2}}+\frac{40 d^{2}(d x+c) \sinh (b x+a)}{9 b^{3}}$

$$
+\frac{2(d x+c)^{3} \sinh (b x+a)}{3 b}+\frac{2 d^{2}(d x+c) \cosh (b x+a)^{2} \sinh (b x+a)}{9 b^{3}}+\frac{(d x+c)^{3} \cosh (b x+a)^{2} \sinh (b x+a)}{3 b}
$$

$$
\begin{aligned}
& \text { Result(type 3, } 675 \text { leaves): } \\
& \frac{1}{b}\left(\frac { 1 } { b ^ { 3 } } \left(d ^ { 3 } \left(\frac{2(b x+a)^{3} \sinh (b x+a)}{3}+\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7(b x+a)^{2} \cosh (b x+a)}{3}+\frac{40(b x+a) \sinh (b x+a)}{9}\right.\right.\right. \\
& \left.\left.-\frac{122 \cosh (b x+a)}{27}-\frac{(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)}{3}+\frac{2(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{9}-\frac{2 \sinh (b x+a)^{2} \cosh (b x+a)}{27}\right)\right) \\
& -\frac{1}{b^{3}}\left(3 d ^ { 3 } a \left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}\right.\right. \\
& \left.\left.-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}+\frac{40 \sinh (b x+a)}{27}\right)\right)+\frac{1}{b^{2}}\left(3 d ^ { 2 } c \left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}\right.\right. \\
& +\frac{2(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27} \\
& \left.\left.+\frac{40 \sinh (b x+a)}{27}\right)\right) \\
& +\frac{3 d^{3} a^{2}\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{3}} \\
& -\frac{6 d^{2} a c\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{2}} \\
& +\frac{3 c^{2} d\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b} \\
& -\frac{d^{3} a^{3}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{3}}+\frac{3 d^{2} a^{2} c\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{2}}-\frac{3 d a c^{2}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b} \\
& \left.+c^{3}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \cosh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 3, 111 leaves, 6 steps):
$-\frac{4 d(d x+c) \cosh (b x+a)}{3 b^{2}}-\frac{2 d(d x+c) \cosh (b x+a)^{3}}{9 b^{2}}+\frac{14 d^{2} \sinh (b x+a)}{9 b^{3}}+\frac{2(d x+c)^{2} \sinh (b x+a)}{3 b}+\frac{(d x+c)^{2} \cosh (b x+a)^{2} \sinh (b x+a)}{3 b}$

$$
+\frac{2 d^{2} \sinh (b x+a)^{3}}{27 b^{3}}
$$

Result(type 3, 319 leaves):
$\frac{1}{b}\left(\frac{1}{b^{2}}\left(d^{2}\left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{2}}{3}+\frac{2(b x+a)^{2} \sinh (b x+a)}{3}-\frac{2(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)}{9}\right.\right.\right.$

$$
\begin{aligned}
& \left.\left.-\frac{14(b x+a) \cosh (b x+a)}{9}+\frac{2 \cosh (b x+a)^{2} \sinh (b x+a)}{27}+\frac{40 \sinh (b x+a)}{27}\right)\right) \\
& -\frac{2 d^{2} a\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b^{2}} \\
& \left.+\frac{2 d c\left(\frac{2(b x+a) \sinh (b x+a)}{3}+\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{2}}{3}-\frac{7 \cosh (b x+a)}{9}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)}{9}\right)}{b}\right) \\
& +\frac{d^{2} a^{2}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b^{2}}-\frac{2 d a c\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)}{b}+c^{2}\left(\frac{2}{3}+\frac{\cosh (b x+a)^{2}}{3}\right) \sinh (b x+a)
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int x^{3} \cosh (b x+a)^{4} \mathrm{~d} x
$$

Optimal(type 3, 152 leaves, 8 steps):
$\frac{45 x^{2}}{128 b^{2}}+\frac{3 x^{4}}{32}-\frac{45 \cosh (b x+a)^{2}}{128 b^{4}}-\frac{9 x^{2} \cosh (b x+a)^{2}}{16 b^{2}}-\frac{3 \cosh (b x+a)^{4}}{128 b^{4}}-\frac{3 x^{2} \cosh (b x+a)^{4}}{16 b^{2}}+\frac{45 x \cosh (b x+a) \sinh (b x+a)}{64 b^{3}}$
$\quad+\frac{3 x^{3} \cosh (b x+a) \sinh (b x+a)}{8 b}+\frac{3 x \cosh (b x+a)^{3} \sinh (b x+a)}{32 b^{3}}+\frac{x^{3} \cosh (b x+a)^{3} \sinh (b x+a)}{4 b}$
Result(type 3, 431 leaves):
$\frac{1}{b^{4}}\left(\frac{(b x+a)^{3} \sinh (b x+a) \cosh (b x+a)^{3}}{4}+\frac{3(b x+a)^{3} \cosh (b x+a) \sinh (b x+a)}{8}+\frac{3(b x+a)^{4}}{32}-\frac{3(b x+a)^{2} \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{16}\right.$

$$
\begin{aligned}
& -\frac{3(b x+a)^{2} \cosh (b x+a)^{2}}{4}+\frac{3(b x+a) \sinh (b x+a) \cosh (b x+a)^{3}}{32}+\frac{45(b x+a) \cosh (b x+a) \sinh (b x+a)}{64}+\frac{45(b x+a)^{2}}{128} \\
& -\frac{3 \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{128}-\frac{3 \cosh (b x+a)^{2}}{8}-3 a\left(\frac{(b x+a)^{2} \sinh (b x+a) \cosh (b x+a)^{3}}{4}+\frac{3(b x+a)^{2} \cosh (b x+a) \sinh (b x+a)}{8}\right. \\
& +\frac{(b x+a)^{3}}{8}-\frac{(b x+a) \sinh (b x+a)^{2} \cosh (b x+a)^{2}}{8}-\frac{(b x+a) \cosh (b x+a)^{2}}{2}+\frac{\cosh (b x+a)^{3} \sinh (b x+a)}{32} \\
& \left.+\frac{15 \cosh (b x+a) \sinh (b x+a)}{64}+\frac{15 b x}{64}+\frac{15 a}{64}\right)+3 a^{2}\left(\frac{(b x+a) \sinh (b x+a) \cosh (b x+a)^{3}}{4}+\frac{3(b x+a) \cosh (b x+a) \sinh (b x+a)}{8}\right. \\
& \left.\left.+\frac{3(b x+a)^{2}}{16}-\frac{\sinh (b x+a)^{2} \cosh (b x+a)^{2}}{16}-\frac{\cosh (b x+a)^{2}}{4}\right)-a^{3}\left(\left(\frac{\cosh (b x+a)^{3}}{4}+\frac{3 \cosh (b x+a)}{8}\right) \sinh (b x+a)+\frac{3 b x}{8}+\frac{3 a}{8}\right)\right)
\end{aligned}
$$

Problem 14: Unable to integrate problem.

$$
\int(d x+c)^{5 / 2} \cosh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 131 leaves, 8 steps):
$-\frac{5 d(d x+c)^{3 / 2} \cosh (b x+a)}{2 b^{2}}+\frac{(d x+c)^{5 / 2} \sinh (b x+a)}{b}+\frac{15 d^{5 / 2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{16 b^{7 / 2}}-\frac{15 d^{5 / 2} \mathrm{e}^{a-\frac{b c}{d}} \mathrm{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{16 b^{7 / 2}}$

$$
+\frac{15 d^{2} \sinh (b x+a) \sqrt{d x+c}}{4 b^{3}}
$$

Result(type 8, 16 leaves):

$$
\int(d x+c)^{5 / 2} \cosh (b x+a) \mathrm{d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)}{(d x+c)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 91 leaves, 6 steps):

$$
-\frac{\mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{b} \sqrt{\pi}}{d^{3 / 2}}+\frac{\mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{b} \sqrt{\pi}}{d^{3 / 2}}-\frac{2 \cosh (b x+a)}{d \sqrt{d x+c}}
$$

Result(type 8, 16 leaves):

$$
\int \frac{\cosh (b x+a)}{(d x+c)^{3 / 2}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)}{(d x+c)^{7 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 132 leaves, 8 steps):
$-\frac{2 \cosh (b x+a)}{5 d(d x+c)^{5 / 2}}-\frac{4 b \sinh (b x+a)}{15 d^{2}(d x+c)^{3 / 2}}-\frac{4 b^{5 / 2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{15 d^{7 / 2}}+\frac{4 b^{5 / 2} \mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{15 d^{7 / 2}}-\frac{8 b^{2} \cosh (b x+a)}{15 d^{3} \sqrt{d x+c}}$
Result(type 8, 16 leaves):

$$
\int \frac{\cosh (b x+a)}{(d x+c)^{7 / 2}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int(d x+c)^{3 / 2} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 159 leaves, 9 steps):
$\frac{(d x+c)^{5 / 2}}{5 d}+\frac{(d x+c)^{3 / 2} \cosh (b x+a) \sinh (b x+a)}{2 b}+\frac{3 d^{3 / 2} \mathrm{e}^{-2 a+\frac{2 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{2} \sqrt{\pi}}{128 b^{5 / 2}}$

$$
+\frac{3 d^{3 / 2} \mathrm{e}^{2 a-\frac{2 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{2} \sqrt{\pi}}{128 b^{5 / 2}}+\frac{3 d \sqrt{d x+c}}{16 b^{2}}-\frac{3 d \cosh (b x+a)^{2} \sqrt{d x+c}}{8 b^{2}}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c)^{3 / 2} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int(d x+c)^{5 / 2} \cosh (b x+a)^{3} \mathrm{~d} x
$$

Optimal(type 4, 291 leaves, 23 steps):

$$
-\frac{5 d(d x+c)^{3 / 2} \cosh (b x+a)}{3 b^{2}}-\frac{5 d(d x+c)^{3 / 2} \cosh (b x+a)^{3}}{18 b^{2}}+\frac{2(d x+c)^{5 / 2} \sinh (b x+a)}{3 b}+\frac{(d x+c)^{5 / 2} \cosh (b x+a)^{2} \sinh (b x+a)}{3 b}
$$

$$
+\frac{5 d^{5 / 2} \mathrm{e}^{-3 a+\frac{3 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{1728 b^{7 / 2}}-\frac{5 d^{5 / 2} \mathrm{e}^{3 a-\frac{3 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{1728 b^{7 / 2}}
$$

$$
\begin{aligned}
& +\frac{45 d^{5 / 2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{64 b^{7 / 2}}-\frac{45 d^{5 / 2} \mathrm{e}^{a-\frac{b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}}{64 b^{7 / 2}}+\frac{45 d^{2} \sinh (b x+a) \sqrt{d x+c}}{16 b^{3}} \\
& +\frac{5 d^{2} \sinh (3 b x+3 a) \sqrt{d x+c}}{144 b^{3}}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c)^{5 / 2} \cosh (b x+a)^{3} \mathrm{~d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\cosh (b x+a)^{3}}{\sqrt{d x+c}} \mathrm{~d} x
$$

Optimal(type 4, 162 leaves, 12 steps):
$\frac{\mathrm{e}^{-3 a+\frac{3 b c}{d}} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{24 \sqrt{b} \sqrt{d}}+\frac{\mathrm{e}^{3 a-\frac{3 b c}{d}} \operatorname{erfi}\left(\frac{\sqrt{3} \sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{3} \sqrt{\pi}}{24 \sqrt{b} \sqrt{d}}+\frac{3 \mathrm{e}}{-a+\frac{b c}{d}} \operatorname{erf}\left(\frac{\sqrt{b} \sqrt{d x+c}}{\sqrt{d}}\right) \sqrt{\pi}$

Result(type 8, 18 leaves):

$$
\int \frac{\cosh (b x+a)^{3}}{\sqrt{d x+c}} \mathrm{~d} x
$$

Problem 25: Result unnecessarily involves higher level functions.

$$
\int x^{3+m} \cosh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 53 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{a} x^{m} \Gamma(4+m,-b x)}{2 b^{4}(-b x)^{m}}-\frac{x^{m} \Gamma(4+m, b x)}{2 b^{4} \mathrm{e}^{a}(b x)^{m}}
$$

Result(type 5, 72 leaves):

$$
\frac{x^{4+m} \text { hypergeom }\left(\left[2+\frac{m}{2}\right],\left[\frac{1}{2}, 3+\frac{m}{2}\right], \frac{x^{2} b^{2}}{4}\right) \cosh (a)}{4+m}+\frac{b x^{5+m} \text { hypergeom }\left(\left[\frac{5}{2}+\frac{m}{2}\right],\left[\frac{3}{2}, \frac{7}{2}+\frac{m}{2}\right], \frac{x^{2} b^{2}}{4}\right) \sinh (a)}{5+m}
$$

Problem 26: Unable to integrate problem.

$$
\int x^{m} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 83 leaves, 5 steps):

$$
\frac{x^{1+m}}{2(1+m)}+\frac{2^{-3-m} \mathrm{e}^{2 a} x^{m} \Gamma(1+m,-2 b x)}{b(-b x)^{m}}-\frac{2^{-3-m} x^{m} \Gamma(1+m, 2 b x)}{b \mathrm{e}^{2 a}(b x)^{m}}
$$

Result(type 8, 14 leaves):

$$
\int x^{m} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int x^{-1+m} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 70 leaves, 5 steps):

$$
\frac{x^{m}}{2 m}-\frac{2^{-2-m} \mathrm{e}^{2 a} x^{m} \Gamma(m,-2 b x)}{(-b x)^{m}}-\frac{2^{-2-m} x^{m} \Gamma(m, 2 b x)}{\mathrm{e}^{2 a}(b x)^{m}}
$$

Result(type 8, 16 leaves):

$$
\int x^{-1+m} \cosh (b x+a)^{2} \mathrm{~d} x
$$

Problem 28: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2}(a+a \cosh (f x+e)) \mathrm{d} x
$$

Optimal(type 3, 65 leaves, 5 steps):

$$
\frac{a(d x+c)^{3}}{3 d}-\frac{2 a d(d x+c) \cosh (f x+e)}{f^{2}}+\frac{2 a d^{2} \sinh (f x+e)}{f^{3}}+\frac{a(d x+c)^{2} \sinh (f x+e)}{f}
$$

Result(type 3, 239 leaves):
$\frac{1}{f}\left(\frac{d^{2} a(f x+e)^{3}}{3 f^{2}}+\frac{d^{2} a\left((f x+e)^{2} \sinh (f x+e)-2(f x+e) \cosh (f x+e)+2 \sinh (f x+e)\right)}{f^{2}}-\frac{d^{2} e a(f x+e)^{2}}{f^{2}}\right.$
$-\frac{2 d^{2} e a((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f^{2}}+\frac{d c a(f x+e)^{2}}{f}+\frac{2 d c a((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f}+\frac{d^{2} e^{2} a(f x+e)}{f^{2}}$
$\left.+\frac{d^{2} e^{2} a \sinh (f x+e)}{f^{2}}-\frac{2 d e c a(f x+e)}{f}-\frac{2 d e c a \sinh (f x+e)}{f}+c^{2} a(f x+e)+c^{2} a \sinh (f x+e)\right)$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)(a+a \cosh (f x+e)) \mathrm{d} x
$$

Optimal(type 3, 43 leaves, 4 steps):

$$
\frac{a(d x+c)^{2}}{2 d}-\frac{a d \cosh (f x+e)}{f^{2}}+\frac{a(d x+c) \sinh (f x+e)}{f}
$$

Result (type 3, 90 leaves):

$$
\frac{\frac{d a(f x+e)^{2}}{2 f}+\frac{d a((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f}-\frac{d e a(f x+e)}{f}-\frac{d e a \sinh (f x+e)}{f}+c a(f x+e)+c a \sinh (f x+e)}{f}
$$

Problem 37: Unable to integrate problem.

$$
\int \frac{\sqrt{a+a \cosh (d x+c)}}{x} d x
$$

Optimal(type 4, 63 leaves, 4 steps):

$$
\text { Chi }\left(\frac{d x}{2}\right) \cosh \left(\frac{c}{2}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{a+a \cosh (d x+c)}+\operatorname{sech}\left(\frac{c}{2}+\frac{d x}{2}\right) \operatorname{Shi}\left(\frac{d x}{2}\right) \sinh \left(\frac{c}{2}\right) \sqrt{a+a \cosh (d x+c)}
$$

Result (type 8, 18 leaves):

$$
\int \frac{\sqrt{a+a \cosh (d x+c)}}{x} \mathrm{~d} x
$$

Problem 38: Unable to integrate problem.

$$
\int \frac{\sqrt{a+a \cosh (d x+c)}}{x^{3}} d x
$$

Optimal(type 4, 115 leaves, 6 steps):
$-\frac{\sqrt{a+a \cosh (d x+c)}}{2 x^{2}}+\frac{d^{2} \operatorname{Chi}\left(\frac{d x}{2}\right) \cosh \left(\frac{c}{2}\right) \operatorname{sech}\left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{a+a \cosh (d x+c)}}{8}$
$+\frac{d^{2} \operatorname{sech}\left(\frac{c}{2}+\frac{d x}{2}\right) \operatorname{Shi}\left(\frac{d x}{2}\right) \sinh \left(\frac{c}{2}\right) \sqrt{a+a \cosh (d x+c)}}{8}-\frac{d \sqrt{a+a \cosh (d x+c)} \tanh \left(\frac{c}{2}+\frac{d x}{2}\right)}{4 x}$
Result (type 8, 18 leaves):

$$
\int \frac{\sqrt{a+a \cosh (d x+c)}}{x^{3}} d x
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{\sqrt{a+a \cosh (x)}}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 32 leaves, 3 steps):

$$
-\frac{\sqrt{a+a \cosh (x)}}{x}+\frac{\operatorname{sech}\left(\frac{x}{2}\right) \operatorname{Shi}\left(\frac{x}{2}\right) \sqrt{a+a \cosh (x)}}{2}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\sqrt{a+a \cosh (x)}}{x^{2}} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int x^{3}(a+a \cosh (x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 3, 139 leaves, 9 steps):
$-\frac{1280 a \sqrt{a+a \cosh (x)}}{9}-16 a x^{2} \sqrt{a+a \cosh (x)}-\frac{64 a \cosh \left(\frac{x}{2}\right)^{2} \sqrt{a+a \cosh (x)}}{27}-\frac{8 a x^{2} \cosh \left(\frac{x}{2}\right)^{2} \sqrt{a+a \cosh (x)}}{3}$

$$
\begin{aligned}
& +\frac{32 a x \cosh \left(\frac{x}{2}\right) \sinh \left(\frac{x}{2}\right) \sqrt{a+a \cosh (x)}}{9}+\frac{4 a x^{3} \cosh \left(\frac{x}{2}\right) \sinh \left(\frac{x}{2}\right) \sqrt{a+a \cosh (x)}}{3}+\frac{640 a x \sqrt{a+a \cosh (x)} \tanh \left(\frac{x}{2}\right)}{9} \\
& +\frac{8 a x^{3} \sqrt{a+a \cosh (x)} \tanh \left(\frac{x}{2}\right)}{3}
\end{aligned}
$$

Result(type 8, 14 leaves):

$$
\int x^{3}(a+a \cosh (x))^{3 / 2} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int(d x+c)^{m}(a+a \cosh (f x+e))^{2} \mathrm{~d} x
$$

Optimal(type 4, 257 leaves, 9 steps):

$$
\begin{aligned}
& \frac{3 a^{2}(d x+c)^{1+m}}{2 d(1+m)}+\frac{2^{-3-m} a^{2} \mathrm{e}^{2 e-\frac{2 c f}{d}}(d x+c)^{m} \Gamma\left(1+m,-\frac{2 f(d x+c)}{d}\right)}{f\left(-\frac{f(d x+c)}{d}\right)^{m}}+\frac{a^{2} \mathrm{e}^{e-\frac{c f}{d}}(d x+c)^{m} \Gamma\left(1+m,-\frac{f(d x+c)}{d}\right)}{f\left(-\frac{f(d x+c)}{d}\right)^{m}} \\
& \quad-\frac{a^{2} \mathrm{e}^{-e+\frac{c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{f(d x+c)}{d}\right)}{f\left(\frac{f(d x+c)}{d}\right)^{m}}-\frac{2^{-3-m} a^{2} \mathrm{e}^{-2 e+\frac{2 c f}{d}}(d x+c)^{m} \Gamma\left(1+m, \frac{2 f(d x+c)}{d}\right)}{f\left(\frac{f(d x+c)}{d}\right)^{m}}
\end{aligned}
$$

Result(type 8, 22 leaves):

$$
\int(d x+c)^{m}(a+a \cosh (f x+e))^{2} \mathrm{~d} x
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3}(a+b \cosh (f x+e)) \mathrm{d} x
$$

Optimal(type 3, 87 leaves, 6 steps):

$$
\frac{a(d x+c)^{4}}{4 d}-\frac{6 b d^{3} \cosh (f x+e)}{f^{4}}-\frac{3 b d(d x+c)^{2} \cosh (f x+e)}{f^{2}}+\frac{6 b d^{2}(d x+c) \sinh (f x+e)}{f^{3}}+\frac{b(d x+c)^{3} \sinh (f x+e)}{f}
$$

Result(type 3, 481 leaves):
$\frac{1}{f}\left(\frac{d^{3} a(f x+e)^{4}}{4 f^{3}}+\frac{d^{3} b\left((f x+e)^{3} \sinh (f x+e)-3(f x+e)^{2} \cosh (f x+e)+6(f x+e) \sinh (f x+e)-6 \cosh (f x+e)\right)}{f^{3}}-\frac{d^{3} e a(f x+e)^{3}}{f^{3}}\right.$

$$
\begin{aligned}
& -\frac{3 d^{3} e b\left((f x+e)^{2} \sinh (f x+e)-2(f x+e) \cosh (f x+e)+2 \sinh (f x+e)\right)}{f^{3}}+\frac{d^{2} c a(f x+e)^{3}}{f^{2}} \\
& +\frac{3 d^{2} c b\left((f x+e)^{2} \sinh (f x+e)-2(f x+e) \cosh (f x+e)+2 \sinh (f x+e)\right)}{f^{2}}+\frac{3 d^{3} e^{2} a(f x+e)^{2}}{2 f^{3}} \\
& +\frac{3 d^{3} e^{2} b((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f^{3}}-\frac{3 d^{2} e c a(f x+e)^{2}}{f^{2}}-\frac{6 d^{2} e c b((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f^{2}}+\frac{3 d c^{2} a(f x+e)^{2}}{2 f} \\
& +\frac{3 d c^{2} b((f x+e) \sinh (f x+e)-\cosh (f x+e))}{f}-\frac{d^{3} e^{3} a(f x+e)}{f^{3}}-\frac{d^{3} e^{3} b \sinh (f x+e)}{f^{3}}+\frac{3 d^{2} e^{2} c a(f x+e)}{f^{2}}+\frac{3 d^{2} e^{2} c b \sinh (f x+e)}{f^{2}} \\
& \left.-\frac{3 d e c^{2} a(f x+e)}{f}-\frac{3 d e c^{2} b \sinh (f x+e)}{f}+a c^{3}(f x+e)+c^{3} b \sinh (f x+e)\right)
\end{aligned}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{(a+b \cosh (f x+e))^{2}}{(d x+c)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 242 leaves, 14 steps):

$$
\begin{array}{r}
-\frac{a^{2}}{2 d(d x+c)^{2}}+\frac{b^{2} f^{2} \operatorname{Chi}\left(\frac{2 c f}{d}+2 f x\right) \cosh \left(-2 e+\frac{2 c f}{d}\right)}{d^{3}}+\frac{a b f^{2} \operatorname{Chi}\left(\frac{c f}{d}+f x\right) \cosh \left(-e+\frac{c f}{d}\right)}{d^{3}}-\frac{a b \cosh (f x+e)}{d(d x+c)^{2}}-\frac{b^{2} \cosh (f x+e)^{2}}{2 d(d x+c)^{2}} \\
-\frac{b^{2} f^{2} \operatorname{Shi}\left(\frac{2 c f}{d}+2 f x\right) \sinh \left(-2 e+\frac{2 c f}{d}\right)}{d^{3}}-\frac{a b f^{2} \operatorname{Shi}\left(\frac{c f}{d}+f x\right) \sinh \left(-e+\frac{c f}{d}\right)}{d^{3}}-\frac{a b f \sinh (f x+e)}{d^{2}(d x+c)}-\frac{b^{2} f \cosh (f x+e) \sinh (f x+e)}{d^{2}(d x+c)}
\end{array}
$$

Result(type 4, 625 leaves):

$$
\begin{aligned}
& \frac{a b f^{3} \mathrm{e}^{-f x-e} x}{2 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}+\frac{a b f^{3} \mathrm{e}^{-f x-e} c}{2 d^{2}\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}-\frac{a b f^{2} \mathrm{e}^{-f x-e}}{2 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}-\frac{a b f^{2} \mathrm{e}^{\frac{c f-d e}{d}} \mathrm{Ei}_{1}\left(f x+e+\frac{c f-d e}{d}\right)}{2 d^{3}} \\
& -\frac{a b f^{2} \mathrm{e}^{f x+e}}{2 d^{3}\left(\frac{c f}{d}+f x\right)^{2}}-\frac{a b f^{2} \mathrm{e}^{f x x+e}}{2 d^{3}\left(\frac{c f}{d}+f x\right)}-\frac{a b f^{2} \mathrm{e}^{-\frac{c f-d e}{d}} \mathrm{Ei}_{1}\left(-f x-e-\frac{c f-d e}{d}\right)}{2 d^{3}}-\frac{a^{2}}{2 d(d x+c)^{2}}-\frac{b^{2}}{4 d(d x+c)^{2}} \\
& +\frac{b^{2} f^{3} \mathrm{e}^{-2 f x-2 e} x}{4 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}+\frac{b^{2} f^{3} \mathrm{e}^{-2 f x-2 e} c}{4 d^{2}\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)}-\frac{b^{2} f^{2} \mathrm{e}^{-2 f x-2 e}}{8 d\left(d^{2} f^{2} x^{2}+2 c d f^{2} x+c^{2} f^{2}\right)} \\
& -\frac{b^{2} f^{2} \mathrm{e} \frac{2(c f-d e)}{d}}{\mathrm{Ei}_{1}\left(2 f x+2 e+\frac{2(c f-d e)}{d}\right)} \\
& 2 d^{3} \\
& -\frac{f^{2} b^{2} \mathrm{e}^{2 f x+2 e}}{8 d^{3}\left(\frac{c f}{d}+f x\right)^{2}}-\frac{f^{2} b^{2} \mathrm{e}^{2 f x+2 e}}{4 d^{3}\left(\frac{c f}{d}+f x\right)}-\frac{f^{2} b^{2} \mathrm{e}^{-\frac{2(c f-d e)}{d}} \mathrm{Ei}_{1}\left(-2 f x-2 e-\frac{2(c f-d e)}{d}\right)}{2 d^{3}}
\end{aligned}
$$

Test results for the 30 problems in "6.2.2 (e x)^m (a+b $\left.x^{\wedge} n\right)^{\wedge} p$ cosh.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int x^{3}(b x+a) \cosh (d x+c) \mathrm{d} x
$$

Optimal(type 3, 124 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{6 a \cosh (d x+c)}{d^{4}}-\frac{24 b x \cosh (d x+c)}{d^{4}}-\frac{3 a x^{2} \cosh (d x+c)}{d^{2}}-\frac{4 b x^{3} \cosh (d x+c)}{d^{2}}+\frac{24 b \sinh (d x+c)}{d^{5}}+\frac{6 a x \sinh (d x+c)}{d^{3}}+\frac{12 b x^{2} \sinh (d x+c)}{d^{3}} \\
& \quad+\frac{a x^{3} \sinh (d x+c)}{d}+\frac{b x^{4} \sinh (d x+c)}{d}
\end{aligned}
$$

Result(type 3, 355 leaves):
$\frac{1}{d^{4}}\left(\frac{b\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d}\right.$
$-\frac{4 b c\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d}$
$+\frac{6 b c^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d}-\frac{4 b c^{3}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d}$
$+\frac{b c^{4} \sinh (d x+c)}{d}+a\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)-3 a c((d x$
$\left.\left.+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)+3 a c^{2}((d x+c) \sinh (d x+c)-\cosh (d x+c))-a c^{3} \sinh (d x+c)\right)$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int x^{2}(b x+a)^{2} \cosh (d x+c) d x
$$

Optimal(type 3, 184 leaves, 14 steps):

$$
\begin{array}{r}
-\frac{12 a b \cosh (d x+c)}{d^{4}}-\frac{24 b^{2} x \cosh (d x+c)}{d^{4}}-\frac{2 a^{2} x \cosh (d x+c)}{d^{2}}-\frac{6 a b x^{2} \cosh (d x+c)}{d^{2}}-\frac{4 b^{2} x^{3} \cosh (d x+c)}{d^{2}}+\frac{24 b^{2} \sinh (d x+c)}{d^{5}} \\
+\frac{2 a^{2} \sinh (d x+c)}{d^{3}}+\frac{12 a b x \sinh (d x+c)}{d^{3}}+\frac{12 b^{2} x^{2} \sinh (d x+c)}{d^{3}}+\frac{a^{2} x^{2} \sinh (d x+c)}{d}+\frac{2 a b x^{3} \sinh (d x+c)}{d}+\frac{b^{2} x^{4} \sinh (d x+c)}{d}
\end{array}
$$

Result (type 3, 462 leaves):
$\frac{1}{d^{3}}\left(\frac{b^{2}\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{2}}\right.$
$-\frac{4 b^{2} c\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{2}}$
$+\frac{6 b^{2} c^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{2}}-\frac{4 b^{2} c^{3}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{2}}$
$+\frac{2 a b\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d}$
$-\frac{6 b c a\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d}+\frac{6 b a c^{2}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d}$
$+\frac{b^{2} c^{4} \sinh (d x+c)}{d^{2}}-\frac{2 b c^{3} a \sinh (d x+c)}{d}+a^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)-2 a^{2} c((d x+c) \sinh (d x$
$\left.+c)-\cosh (d x+c))+a^{2} c^{2} \sinh (d x+c)\right)$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \cosh (d x+c)}{(b x+a)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 175 leaves, 11 steps):

$$
\begin{aligned}
& -\frac{a d^{2} \operatorname{Chi}\left(\frac{d a}{b}+d x\right) \cosh \left(-c+\frac{d a}{b}\right)}{2 b^{4}}+\frac{a \cosh (d x+c)}{2 b^{2}(b x+a)^{2}}-\frac{\cosh (d x+c)}{b^{2}(b x+a)}+\frac{d \cosh \left(-c+\frac{d a}{b}\right) \operatorname{Shi}\left(\frac{d a}{b}+d x\right)}{b^{3}}-\frac{d \operatorname{Chi}\left(\frac{d a}{b}+d x\right) \sinh \left(-c+\frac{d a}{b}\right)}{b^{3}}+\frac{a d^{2} \operatorname{Shi}\left(\frac{d a}{b}+d x\right) \sinh \left(-c+\frac{d a}{b}\right)}{2 b^{4}}+\frac{a d \sinh (d x+c)}{2 b^{3}(b x+a)}
\end{aligned}
$$

Result(type 4, 434 leaves):
$-\frac{d^{3} \mathrm{e}^{-d x-c} a x}{4 b^{2}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}-\frac{d^{3} \mathrm{e}^{-d x-c} a^{2}}{4 b^{3}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}-\frac{d^{2} \mathrm{e}^{-d x-c} x}{2 b\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}-\frac{d^{2} \mathrm{e}^{-d x-c} a}{4 b^{2}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}$

$$
\begin{aligned}
& +\frac{d^{2} \mathrm{e}^{\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(d x+c+\frac{d a-c b}{b}\right) a}{4 b^{4}}+\frac{d \mathrm{e}^{\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(d x+c+\frac{d a-c b}{b}\right)}{2 b^{3}}+\frac{d^{2} \mathrm{e}^{d x+c} a}{4 b^{4}\left(\frac{d a}{b}+d x\right)^{2}}+\frac{d^{2} \mathrm{e}^{d x+c} a}{4 b^{4}\left(\frac{d a}{b}+d x\right)} \\
& +\frac{d^{2} \mathrm{e}^{-\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(-d x-c-\frac{d a-c b}{b}\right) a}{4 b^{4}}-\frac{d \mathrm{e}^{d x+c}}{2 b^{3}\left(\frac{d a}{b}+d x\right)}-\frac{d \mathrm{e}^{-\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(-d x-c-\frac{d a-c b}{b}\right)}{2 b^{3}}
\end{aligned}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (d x+c)}{x^{3}(b x+a)^{3}} \mathrm{~d} x
$$

Optimal(type 4, 367 leaves, 26 steps):
$\frac{6 b^{2} \operatorname{Chi}(d x) \cosh (c)}{a^{5}}+\frac{d^{2} \operatorname{Chi}(d x) \cosh (c)}{2 a^{3}}-\frac{6 b^{2} \operatorname{Chi}\left(\frac{d a}{b}+d x\right) \cosh \left(-c+\frac{d a}{b}\right)}{a^{5}}-\frac{d^{2} \operatorname{Chi}\left(\frac{d a}{b}+d x\right) \cosh \left(-c+\frac{d a}{b}\right)}{2 a^{3}}-\frac{\cosh (d x+c)}{2 a^{3} x^{2}}$
$+\frac{3 b \cosh (d x+c)}{a^{4} x}+\frac{b^{2} \cosh (d x+c)}{2 a^{3}(b x+a)^{2}}+\frac{3 b^{2} \cosh (d x+c)}{a^{4}(b x+a)}-\frac{3 b d \cosh (c) \operatorname{Shi}(d x)}{a^{4}}-\frac{3 b d \cosh \left(-c+\frac{d a}{b}\right) \operatorname{Shi}\left(\frac{d a}{b}+d x\right)}{a^{4}}$
$-\frac{3 b d \operatorname{Chi}(d x) \sinh (c)}{a^{4}}+\frac{6 b^{2} \operatorname{Shi}(d x) \sinh (c)}{a^{5}}+\frac{d^{2} \operatorname{Shi}(d x) \sinh (c)}{2 a^{3}}+\frac{3 b d \operatorname{Chi}\left(\frac{d a}{b}+d x\right) \sinh \left(-c+\frac{d a}{b}\right)}{a^{4}}$
$+\frac{6 b^{2} \operatorname{Shi}\left(\frac{d a}{b}+d x\right) \sinh \left(-c+\frac{d a}{b}\right)}{a^{5}}+\frac{d^{2} \operatorname{Shi}\left(\frac{d a}{b}+d x\right) \sinh \left(-c+\frac{d a}{b}\right)}{2 a^{3}}-\frac{d \sinh (d x+c)}{2 a^{3} x}+\frac{b d \sinh (d x+c)}{2 a^{3}(b x+a)}$
Result(type 4, 759 leaves):

$$
\begin{aligned}
& \frac{d^{3} \mathrm{e}^{-d x-c} b}{4 a^{2}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}+\frac{3 d^{2} \mathrm{e}^{-d x-c} x b^{3}}{a^{4}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}+\frac{d^{3} \mathrm{e}^{-d x-c}}{4 a x\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}+\frac{9 d^{2} \mathrm{e}^{-d x-c} b^{2}}{2 a^{3}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)} \\
& +\frac{d^{2} \mathrm{e}^{-d x-c} b}{a^{2} x\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}-\frac{d^{2} \mathrm{e}^{-d x-c}}{4 a x^{2}\left(b^{2} d^{2} x^{2}+2 a b d^{2} x+a^{2} d^{2}\right)}+\frac{d^{2} \mathrm{e}^{\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(d x+c+\frac{d a-c b}{b}\right)}{4 a^{3}} \\
& -\frac{3 d \mathrm{e}^{\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(d x+c+\frac{d a-c b}{b}\right) b}{2 a^{4}}+\frac{3 \mathrm{e}^{\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(d x+c+\frac{d a-c b}{b}\right) b^{2}}{a^{5}}-\frac{d^{2} \mathrm{e}^{-c} \mathrm{Ei}_{1}(d x)}{4 a^{3}}-\frac{3 d \mathrm{e}^{-c} \operatorname{Ei}_{1}(d x) b}{2 a^{4}}-\frac{3 \mathrm{e}^{-c} \operatorname{Ei}_{1}(d x) b^{2}}{a^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{d^{2} \mathrm{e}^{d x+c}}{4 a^{3}\left(\frac{d a}{b}+d x\right)^{2}}+\frac{d^{2} \mathrm{e}^{d x+c}}{4 a^{3}\left(\frac{d a}{b}+d x\right)}+\frac{d^{2} \mathrm{e}^{-\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(-d x-c-\frac{d a-c b}{b}\right)}{4 a^{3}}+\frac{3 d b \mathrm{e}^{d x+c}}{2 a^{4}\left(\frac{d a}{b}+d x\right)} \\
& +\frac{3 d b \mathrm{e}^{-\frac{d a-c b}{b}} \operatorname{Ei}_{1}\left(-d x-c-\frac{d a-c b}{b}\right)}{2 a^{4}}+\frac{3 b \mathrm{e}^{d x+c}}{2 a^{4} x}+\frac{3 d b \mathrm{e}^{c} \mathrm{Ei}_{1}(-d x)}{2 a^{4}}+\frac{3 b^{2} \mathrm{e}^{-\frac{d a-c b}{b}} \mathrm{Ei}_{1}\left(-d x-c-\frac{d a-c b}{b}\right)}{b}-\frac{3 b^{2} \mathrm{e}^{c} \mathrm{Ei}_{1}(-d x)}{a^{5}} \\
& -\frac{\mathrm{e}^{d x+c}}{4 a^{3} x^{2}}-\frac{d \mathrm{e}^{d x+c}}{4 a^{3} x}-\frac{d^{2} \mathrm{e}^{c} \mathrm{Ei}_{1}(-d x)}{4 a^{3}}
\end{aligned}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(b x^{2}+a\right) \cosh (d x+c) \mathrm{d} x
$$

Optimal(type 3, 109 leaves, 10 steps):
$-\frac{24 b x \cosh (d x+c)}{d^{4}}-\frac{2 a x \cosh (d x+c)}{d^{2}}-\frac{4 b x^{3} \cosh (d x+c)}{d^{2}}+\frac{24 b \sinh (d x+c)}{d^{5}}+\frac{2 a \sinh (d x+c)}{d^{3}}+\frac{12 b x^{2} \sinh (d x+c)}{d^{3}}+\frac{a x^{2} \sinh (d x+c)}{d}$ $+\frac{b x^{4} \sinh (d x+c)}{d}$
Result(type 3, 297 leaves):
$\frac{1}{d^{3}}\left(\frac{b\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{2}}\right.$

$$
\begin{aligned}
& -\frac{4 b c\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{2}} \\
& +\frac{6 b c^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{2}}-\frac{4 b c^{3}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{2}} \\
& +\frac{b c^{4} \sinh (d x+c)}{d^{2}}+a\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)-2 a c((d x+c) \sinh (d x+c)-\cosh (d x+c)) \\
& \left.+c^{2} a \sinh (d x+c)\right)
\end{aligned}
$$

Problem 17: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(b x^{2}+a\right)^{2} \cosh (d x+c) d x
$$

Optimal(type 3, 234 leaves, 17 steps):
$-\frac{720 b^{2} x \cosh (d x+c)}{d^{6}}-\frac{48 a b x \cosh (d x+c)}{d^{4}}-\frac{2 a^{2} x \cosh (d x+c)}{d^{2}}-\frac{120 b^{2} x^{3} \cosh (d x+c)}{d^{4}}-\frac{8 a b x^{3} \cosh (d x+c)}{d^{2}}-\frac{6 b^{2} x^{5} \cosh (d x+c)}{d^{2}}$

$$
\begin{aligned}
& +\frac{720 b^{2} \sinh (d x+c)}{d^{7}}+\frac{48 a b \sinh (d x+c)}{d^{5}}+\frac{2 a^{2} \sinh (d x+c)}{d^{3}}+\frac{360 b^{2} x^{2} \sinh (d x+c)}{d^{5}}+\frac{24 a b x^{2} \sinh (d x+c)}{d^{3}}+\frac{a^{2} x^{2} \sinh (d x+c)}{d} \\
& +\frac{30 b^{2} x^{4} \sinh (d x+c)}{d^{3}}+\frac{2 a b x^{4} \sinh (d x+c)}{d}+\frac{b^{2} x^{6} \sinh (d x+c)}{d}
\end{aligned}
$$

Result (type 3, 737 leaves):

$$
\frac{1}{d^{3}}\left(a^{2} c^{2} \sinh (d x+c)-\frac{8 b a c\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{2}}\right.
$$

$$
+\frac{12 b c^{2} a\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{2}}-\frac{8 b c^{3} a((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{2}}
$$

$$
-\frac{1}{d^{4}}\left(6 b ^ { 2 } c \left((d x+c)^{5} \sinh (d x+c)-5(d x+c)^{4} \cosh (d x+c)+20(d x+c)^{3} \sinh (d x+c)-60(d x+c)^{2} \cosh (d x+c)+120(d x+c) \sinh (d x\right.\right.
$$

$$
+c)-120 \cosh (d x+c)))
$$

$$
+\frac{15 b^{2} c^{2}\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{4}}
$$

$$
-\frac{20 b^{2} c^{3}\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{4}}
$$

$$
+\frac{15 b^{2} c^{4}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{4}}
$$

$$
+\frac{2 b a\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{2}}
$$

$$
-\frac{6 b^{2} c^{5}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{4}}+\frac{2 b c^{4} a \sinh (d x+c)}{d^{2}}+a^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x\right.
$$

$$
+c))+\frac{1}{d^{4}}\left(b ^ { 2 } \left((d x+c)^{6} \sinh (d x+c)-6(d x+c)^{5} \cosh (d x+c)+30(d x+c)^{4} \sinh (d x+c)-120(d x+c)^{3} \cosh (d x+c)+360(d x\right.\right.
$$

$$
\left.\left.\left.+c)^{2} \sinh (d x+c)-720(d x+c) \cosh (d x+c)+720 \sinh (d x+c)\right)\right)+\frac{b^{2} c^{6} \sinh (d x+c)}{d^{4}}-2 a^{2} c((d x+c) \sinh (d x+c)-\cosh (d x+c))\right)
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int x^{2}\left(b x^{3}+a\right) \cosh (d x+c) \mathrm{d} x
$$

Optimal(type 3, 124 leaves, 11 steps):

```
\(-\frac{120 b \cosh (d x+c)}{d^{6}}-\frac{2 a x \cosh (d x+c)}{d^{2}}-\frac{60 b x^{2} \cosh (d x+c)}{d^{4}}-\frac{5 b x^{4} \cosh (d x+c)}{d^{2}}+\frac{2 a \sinh (d x+c)}{d^{3}}+\frac{120 b x \sinh (d x+c)}{d^{5}}\)
    \(+\frac{a x^{2} \sinh (d x+c)}{d}+\frac{20 b x^{3} \sinh (d x+c)}{d^{3}}+\frac{b x^{5} \sinh (d x+c)}{d}\)
```

Result(type 3, 388 leaves):
$\frac{1}{d^{3}}\left(\frac{1}{d^{3}}\left(b\left((d x+c)^{5} \sinh (d x+c)-5(d x+c)^{4} \cosh (d x+c)+20(d x+c)^{3} \sinh (d x+c)-60(d x+c)^{2} \cosh (d x+c)+120(d x+c) \sinh (d x+c)\right.\right.\right.$
$-120 \cosh (d x+c)))$
$-\frac{5 b c\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{3}}$
$+\frac{10 b c^{2}\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{3}}$
$-\frac{10 b c^{3}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{3}}+\frac{5 b c^{4}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{3}}$
$-\frac{b c^{5} \sinh (d x+c)}{d^{3}}+a\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)-2 a c((d x+c) \sinh (d x+c)-\cosh (d x+c))$
$\left.+c^{2} a \sinh (d x+c)\right)$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int x\left(b x^{3}+a\right) \cosh (d x+c) \mathrm{d} x
$$

Optimal(type 3, 94 leaves, 9 steps):
$-\frac{a \cosh (d x+c)}{d^{2}}-\frac{24 b x \cosh (d x+c)}{d^{4}}-\frac{4 b x^{3} \cosh (d x+c)}{d^{2}}+\frac{24 b \sinh (d x+c)}{d^{5}}+\frac{a x \sinh (d x+c)}{d}+\frac{12 b x^{2} \sinh (d x+c)}{d^{3}}+\frac{b x^{4} \sinh (d x+c)}{d}$
Result(type 3, 256 leaves):
$\frac{1}{d^{2}}\left(\frac{b\left((d x+c)^{4} \sinh (d x+c)-4(d x+c)^{3} \cosh (d x+c)+12(d x+c)^{2} \sinh (d x+c)-24(d x+c) \cosh (d x+c)+24 \sinh (d x+c)\right)}{d^{3}}\right.$
$-\frac{4 b c\left((d x+c)^{3} \sinh (d x+c)-3(d x+c)^{2} \cosh (d x+c)+6(d x+c) \sinh (d x+c)-6 \cosh (d x+c)\right)}{d^{3}}$
$+\frac{6 b c^{2}\left((d x+c)^{2} \sinh (d x+c)-2(d x+c) \cosh (d x+c)+2 \sinh (d x+c)\right)}{d^{3}}-\frac{4 b c^{3}((d x+c) \sinh (d x+c)-\cosh (d x+c))}{d^{3}}+a((d x$
$\left.+c) \sinh (d x+c)-\cosh (d x+c))+\frac{b c^{4} \sinh (d x+c)}{d^{3}}-c a \sinh (d x+c)\right)$

Problem 28: Result is not expressed in closed-form.

$$
\int \frac{\cosh (d x+c)}{x^{2}\left(b x^{3}+a\right)} d x
$$

Optimal(type 4, 273 leaves, 17 steps):

$$
\begin{aligned}
& \frac{b^{1 / 3} \operatorname{Chi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \cosh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}}+\frac{(-1)^{2 / 3} b^{1 / 3} \operatorname{Chi}\left(\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}} \\
& -\frac{(-1)^{1 / 3} b^{1 / 3} \operatorname{Chi}\left(-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}}-\frac{\cosh (d x+c)}{a x}+\frac{d \cosh (c) \operatorname{Shi}(d x)}{a}+\frac{d \operatorname{Chi}(d x) \sinh (c)}{a} \\
& +\frac{b^{1 / 3} \operatorname{Shi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}}+\frac{(-1)^{2 / 3} b^{1 / 3} \operatorname{Shi}\left(-\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}} \\
& -\frac{(-1)^{1 / 3} b^{1 / 3} \operatorname{Shi}\left(\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{4 / 3}}
\end{aligned}
$$

Result(type 7, 186 leaves):
$-\frac{\mathrm{e}^{-d x-c}}{2 x a}+\frac{d\left(\sum_{-R I=R o o t O f(}\left(Z^{3} b-3 Z^{2} b c+3-Z b c^{2}+a d^{3}-b c^{3}\right)\right.}{6 a}+\frac{\left.\frac{\mathrm{e}^{-R I} \mathrm{Ei}_{1}\left(d x-_R 1+c\right)}{-R 1-c}\right)}{2 a}-\frac{d \mathrm{e}^{-c} \mathrm{Ei}_{1}(d x)}{2 x a}$

$$
+\frac{d\left(\sum_{-R l=R o o t O f\left(Z^{3} b-3 Z^{2} b c+3 _Z b c^{2}+a d^{3}-b c^{3}\right)} \frac{\left.\frac{\mathrm{e}^{R 1} \mathrm{Ei}_{1}\left(-d x+_R 1-c\right)}{R 1-c}\right)}{-R 1}-\frac{d \mathrm{e}^{c} \mathrm{Ei}_{1}(-d x)}{2 a}\right.}{2 a}
$$

Problem 29: Result is not expressed in closed-form.

$$
\int \frac{\cosh (d x+c)}{x^{3}\left(b x^{3}+a\right)} \mathrm{d} x
$$

Optimal(type 4, 294 leaves, 18 steps):
$\frac{d^{2} \operatorname{Chi}(d x) \cosh (c)}{2 a}-\frac{b^{2 / 3} \operatorname{Chi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \cosh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}+\frac{(-1)^{1 / 3} b^{2 / 3} \operatorname{Chi}\left(\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}$

$$
\begin{aligned}
& -\frac{(-1)^{2 / 3} b^{2 / 3} \operatorname{Chi}\left(-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}-\frac{\cosh (d x+c)}{2 a x^{2}}+\frac{d^{2} \operatorname{Shi}(d x) \sinh (c)}{2 a} \\
& -\frac{b^{2 / 3} \operatorname{Shi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}+\frac{(-1)^{1 / 3} b^{2 / 3} \operatorname{Shi}\left(-\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}
\end{aligned}
$$

$$
-\frac{(-1)^{2 / 3} b^{2 / 3} \operatorname{Shi}\left(\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{3 a^{5 / 3}}-\frac{d \sinh (d x+c)}{2 a x}
$$

Result(type 7, 239 leaves):
$\frac{d \mathrm{e}^{-d x-c}}{4 x a}-\frac{\mathrm{e}^{-d x-c}}{4 x^{2} a}+\frac{\left.d^{2}\left(\sum_{R 1=\operatorname{RootOf}\left(Z^{3} b-3\right.} Z^{2} b c+3 Z b c^{2}+a d^{3}-b c^{3}\right) \quad \frac{\mathrm{e}^{-R}-R 1 \mathrm{Ei}_{1}\left(d x-l^{2}-2 _R 1 c+c\right)}{R^{2}}\right)}{6 a}-\frac{d^{2} \mathrm{e}^{-c} \mathrm{Ei}_{1}(d x)}{4 a}-\frac{d \mathrm{e}^{d x+c}}{4 x a}-\frac{\mathrm{e}^{d x+c}}{4 x^{2} a}$

$$
+\frac{\sum^{2}\left(\sum_{R l=\operatorname{RootOf}\left(Z^{3} b-3\right.} Z^{2} b c+3 \quad Z b c^{2}+a d^{3}-b c^{3}\right)}{6 a}-\frac{\left.\frac{\mathrm{e}^{R 1} \mathrm{Ei}_{1}\left(-d x+{ }^{2} R 1-c\right)}{R 1^{2}-2 _R 1 c+c^{2}}\right)}{d^{2} \mathrm{e}^{c} \mathrm{Ei}_{1}(-d x)} 4 a
$$

Problem 30: Result is not expressed in closed-form.

$$
\int \frac{x^{3} \cosh (d x+c)}{\left(b x^{3}+a\right)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 500 leaves, 23 steps):

$$
\frac{\operatorname{Chi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \cosh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}-\frac{(-1)^{1 / 3} \operatorname{Chi}\left(\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}
$$

$$
+\frac{(-1)^{2 / 3} \operatorname{Chi}\left(-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \cosh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}-\frac{x \cosh (d x+c)}{3 b\left(b x^{3}+a\right)}
$$

$$
-\frac{(-1)^{2 / 3} d \cosh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right) \operatorname{Shi}\left(-\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right)}{9 a^{1 / 3} b^{5 / 3}}-\frac{d \cosh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right) \operatorname{Shi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right)}{9 a^{1 / 3} b^{5 / 3}}
$$

$$
+\frac{(-1)^{1 / 3} d \cosh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right) \operatorname{Shi}\left(\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right)}{9 a^{1 / 3} b^{5 / 3}}-\frac{d \operatorname{Chi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{1 / 3} b^{5 / 3}}
$$

$$
+\frac{\operatorname{Shi}\left(\frac{a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}-\frac{(-1)^{2 / 3} d \operatorname{Chi}\left(\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \sinh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{1 / 3} b^{5 / 3}}
$$

$$
-\frac{(-1)^{1 / 3} \operatorname{Shi}\left(-\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c+\frac{(-1)^{1 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}+\frac{(-1)^{1 / 3} d \operatorname{Chi}\left(-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}-d x\right) \sinh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{1 / 3} b^{5 / 3}}
$$

$$
+\frac{(-1)^{2 / 3} \operatorname{Shi}\left(\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}+d x\right) \sinh \left(c-\frac{(-1)^{2 / 3} a^{1 / 3} d}{b^{1 / 3}}\right)}{9 a^{2 / 3} b^{4 / 3}}
$$

Result(type 7, 876 leaves):

$$
\begin{gathered}
-\frac{d^{3} \mathrm{e}^{-d x-c} x}{6 b\left(b d^{3} x^{3}+a d^{3}\right)} \\
-\frac{1}{18 d a b^{2}}(
\end{gathered}
$$

$$
\left.\left.\sum_{-R I=R o o t O f\left(Z^{3} b-3 Z^{2} b c+3 _Z b c^{2}+a d^{3}-b c^{3}\right)} \frac{\left(3 _R l^{2} b c^{2}-_R l a d^{3}-5 _R l b c^{3}-2 a c d^{3}+2 b c^{4}+3 _R l b c^{2}+a d^{3}-b c^{3}\right) \mathrm{e}^{-}-R l}{} \mathrm{Ei}_{1}(d x]_{-} R 1+c\right)\right)
$$

$$
+\frac{c^{3}\left(\sum_{R I=\operatorname{RootOf}\left(Z^{3} b-3\right.} Z^{2} b c+3 Z b c^{2}+a d^{3}-b c^{3}\right)}{18 d a b}
$$

$$
\left.-\frac{c^{2}\left(\sum _ { R I = R o o t O f (} \left(Z^{3} b-3\right.\right.}{} \frac{\left.Z^{2} b c+3 Z b b c^{2}+a d^{3}-b c^{3}\right)}{6 d a b}\right)
$$

$$
\left.+\frac{c\left(\sum_{R l=\operatorname{RootOf}\left(Z^{3} b-3 Z^{2} b c+3 Z Z b c^{2}+a d^{3}-b c^{3}\right)} \frac{\left(2 _R l^{2} b c-3 _R l b c^{2}-a d^{3}+b c^{3}+2 _R l b c\right) \mathrm{e}^{-}-R l}{} \mathrm{Ei}_{1}\left(d x-_^{R} R 1+c\right)\right.}{6 d a b^{2}-2 _R l c+c^{2}}\right)-\frac{d^{3} \mathrm{e}^{d x+c} x}{6 b\left(b d^{3} x^{3}+a d^{3}\right)}
$$

$$
+\frac{1}{18 d a b^{2}}(
$$

$$
\left.\sum_{-^{R l=R o o t O f}\left(Z^{3} b-3 _^{2} b c+3 _Z b c^{2}+a d^{3}-b c^{3}\right)} \frac{\left(3 __{-} R l^{2} b c^{2}-__{-} R l a d^{3}-5 _R l b c^{3}-2 a c d^{3}+2 b c^{4}-3 _R l b c^{2}-a d^{3}+b c^{3}\right) \mathrm{e}^{R l} \mathrm{Ei}_{1}\left(-d x+__{-} R l-c\right)}{-^{2} l^{2}-2_{-} R l c+c^{2}}\right)
$$

$$
\left.\left.\left.-\frac{c^{3}\left(\sum _ { R l = R o o t O f (} \left(Z^{3} b-3\right.\right.}{} \sum_{Z^{2} b c+3} Z b c^{2}+a d^{3}-b c^{3}\right) \frac{(-R 1-c-2) \mathrm{e}^{R l} \mathrm{Ei}_{1}\left(-d x+_R 1-c\right)}{18 d a b}\right) _^{R 1^{2}-2 _R 1 c+c^{2}}\right)
$$

$$
\left.-c\left(\sum_{R l=R o o t O f\left(Z^{3} b-3\right.} \sum_{Z^{2} b c+3} Z b c^{2}+a d^{3}-b c^{3}\right) \frac{\left(2_{-} R l^{2} b c-3 _R l b c^{2}-a d^{3}+b c^{3}-2_{-} R l b c\right) \mathrm{e}^{R l} \mathrm{Ei}_{1}\left(-d x+__{-} R l-c\right)}{R l^{2}-2_{-} R 1 c+c^{2}}\right)
$$

Test results for the 22 problems in "6.2.3 (e $x)^{\wedge} m\left(a+b \cosh \left(c+d x^{\wedge} n\right)\right)^{\wedge} p . t x t^{\prime \prime}$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh \left(a+\frac{b}{x}\right)}{x^{4}} d x
$$

Optimal(type 3, 46 leaves, 4 steps):

$$
\frac{2 \cosh \left(a+\frac{b}{x}\right)}{b^{2} x}-\frac{2 \sinh \left(a+\frac{b}{x}\right)}{b^{3}}-\frac{\sinh \left(a+\frac{b}{x}\right)}{b x^{2}}
$$

Result (type 3, 93 leaves):

$$
-\frac{\left(a+\frac{b}{x}\right)^{2} \sinh \left(a+\frac{b}{x}\right)-2\left(a+\frac{b}{x}\right) \cosh \left(a+\frac{b}{x}\right)+2 \sinh \left(a+\frac{b}{x}\right)-2 a\left(\left(a+\frac{b}{x}\right) \sinh \left(a+\frac{b}{x}\right)-\cosh \left(a+\frac{b}{x}\right)\right)+a^{2} \sinh \left(a+\frac{b}{x}\right)}{b^{3}}
$$

Problem 12: Result unnecessarily involves higher level functions.

$$
\int \cosh \left(a+b x^{n}\right) \mathrm{d} x
$$

Optimal(type 4, 61 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{a} x \Gamma\left(\frac{1}{n},-b x^{n}\right)}{2 n\left(-b x^{n}\right)^{\frac{1}{n}}}-\frac{x \Gamma\left(\frac{1}{n}, b x^{n}\right)}{2 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{1}{n}}}
$$

Result(type 5, 73 leaves):

$$
x \text { hypergeom }\left(\left[\frac{1}{2 n}\right],\left[\frac{1}{2}, 1+\frac{1}{2 n}\right], \frac{x^{2 n} b^{2}}{4}\right) \cosh (a)+\frac{x^{n+1} b \text { hypergeom }\left(\left[\frac{1}{2}+\frac{1}{2 n}\right],\left[\frac{3}{2}, \frac{3}{2}+\frac{1}{2 n}\right], \frac{x^{2 n} b^{2}}{4}\right) \sinh (a)}{n+1}
$$

Problem 13: Unable to integrate problem.

$$
\int \cosh \left(a+b x^{n}\right)^{3} d x
$$

Optimal(type 4, 140 leaves, 8 steps):

$$
-\frac{\mathrm{e}^{3 a} x \Gamma\left(\frac{1}{n},-3 b x^{n}\right)}{83^{\frac{1}{n}} n\left(-b x^{n}\right)^{\frac{1}{n}}}-\frac{3 \mathrm{e}^{a} x \Gamma\left(\frac{1}{n},-b x^{n}\right)}{8 n\left(-b x^{n}\right)^{\frac{1}{n}}}-\frac{3 x \Gamma\left(\frac{1}{n}, b x^{n}\right)}{8 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{1}{n}}}-\frac{x \Gamma\left(\frac{1}{n}, 3 b x^{n}\right)}{83^{\frac{1}{n}} \mathrm{e}^{3 a} n\left(b x^{n}\right)^{\frac{1}{n}}}
$$

Result(type 8, 12 leaves):

$$
\int \cosh \left(a+b x^{n}\right)^{3} d x
$$

Problem 15: Unable to integrate problem.

$$
\int(e x)^{-1+n}\left(a+b \cosh \left(c+d x^{n}\right)\right)^{p} \mathrm{~d} x
$$

Optimal(type 6, 117 leaves, 5 steps):

$$
\frac{(\text { ex })^{n} \text { AppellF1 }\left(\frac{1}{2},-p, \frac{1}{2}, \frac{3}{2}, \frac{b\left(1-\cosh \left(c+d x^{n}\right)\right)}{a+b}, \frac{1}{2}-\frac{\cosh \left(c+d x^{n}\right)}{2}\right)\left(a+b \cosh \left(c+d x^{n}\right)\right)^{p} \sinh \left(c+d x^{n}\right) \sqrt{2}}{d e n x^{n}\left(\frac{a+b \cosh \left(c+d x^{n}\right)}{a+b}\right)^{p} \sqrt{1+\cosh \left(c+d x^{n}\right)}}
$$

Result(type 8, 24 leaves):

$$
\int(e x)^{-1+n}\left(a+b \cosh \left(c+d x^{n}\right)\right)^{p} \mathrm{~d} x
$$

Problem 16: Result unnecessarily involves higher level functions.
$\int x^{m} \cosh \left(a+b x^{n}\right) \mathrm{d} x$
Optimal(type 4, 85 leaves, 3 steps):

$$
-\frac{\mathrm{e}^{a} x^{1+m} \Gamma\left(\frac{1+m}{n},-b x^{n}\right)}{2 n\left(-b x^{n}\right)^{\frac{1+m}{n}}}-\frac{x^{1+m} \Gamma\left(\frac{1+m}{n}, b x^{n}\right)}{2 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{1+m}{n}}}
$$

Result(type 5, 109 leaves):
$\frac{x^{1+m} \text { hypergeom }\left(\left[\frac{m}{2 n}+\frac{1}{2 n}\right],\left[\frac{1}{2}, 1+\frac{m}{2 n}+\frac{1}{2 n}\right], \frac{x^{2 n} b^{2}}{4}\right) \cosh (a)}{1+m}$

$$
+\frac{x^{m+n+1} b \text { hypergeom }\left(\left[\frac{1}{2}+\frac{m}{2 n}+\frac{1}{2 n}\right],\left[\frac{3}{2}, \frac{3}{2}+\frac{m}{2 n}+\frac{1}{2 n}\right], \frac{x^{2 n} b^{2}}{4}\right) \sinh (a)}{m+n+1}
$$

Problem 17: Unable to integrate problem.

$$
\int x^{m} \cosh \left(a+b x^{n}\right)^{3} d x
$$

Optimal(type 4, 196 leaves, 8 steps):

$$
-\frac{\mathrm{e}^{3 a} x^{1+m} \Gamma\left(\frac{1+m}{n},-3 b x^{n}\right)}{83^{\frac{1+m}{n}} n\left(-b x^{n}\right)^{\frac{1+m}{n}}}-\frac{3 \mathrm{e}^{a} x^{1+m} \Gamma\left(\frac{1+m}{n},-b x^{n}\right)}{8 n\left(-b x^{n}\right)^{\frac{1+m}{n}}}-\frac{3 x^{1+m} \Gamma\left(\frac{1+m}{n}, b x^{n}\right)}{8 \mathrm{e}^{a} n\left(b x^{n}\right)^{\frac{1+m}{n}}}-\frac{x^{1+m} \Gamma\left(\frac{1+m}{n}, 3 b x^{n}\right)}{83^{\frac{1+m}{n}} \mathrm{e}^{3 a} n\left(b x^{n}\right)^{\frac{1+m}{n}}}
$$

Result(type 8, 16 leaves):

$$
\int x^{m} \cosh \left(a+b x^{n}\right)^{3} d x
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cosh (a+b \sqrt{d x+c}) d x
$$

Optimal(type 3, 310 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{240 \cosh (a+b \sqrt{d x+c})}{b^{6} d^{3}}+\frac{24 c \cosh (a+b \sqrt{d x+c})}{b^{4} d^{3}}-\frac{2 c^{2} \cosh (a+b \sqrt{d x+c})}{b^{2} d^{3}}-\frac{120(d x+c) \cosh (a+b \sqrt{d x+c})}{b^{4} d^{3}} \\
& +\frac{12 c(d x+c) \cosh (a+b \sqrt{d x+c})}{b^{2} d^{3}}-\frac{10(d x+c)^{2} \cosh (a+b \sqrt{d x+c})}{b^{2} d^{3}}+\frac{40(d x+c)^{3 / 2} \sinh (a+b \sqrt{d x+c})}{b^{3} d^{3}} \\
& -\frac{4 c(d x+c)^{3} / 2 \sinh (a+b \sqrt{d x+c})}{b d^{3}}+\frac{2(d x+c)^{5} / 2 \sinh (a+b \sqrt{d x+c})}{b d^{3}}+\frac{240 \sinh (a+b \sqrt{d x+c}) \sqrt{d x+c}}{b^{5} d^{3}} \\
& -\frac{24 c \sinh (a+b \sqrt{d x+c}) \sqrt{d x+c}}{b^{3} d^{3}}+\frac{2 c^{2} \sinh (a+b \sqrt{d x+c}) \sqrt{d x+c}}{b d^{3}}
\end{aligned}
$$

Result (type 3, 830 leaves):

$$
\begin{aligned}
& \frac{1}{d^{3} b^{2}}\left(2 \left(\frac { 1 } { b ^ { 4 } } \left((a+b \sqrt{d x+c})^{5} \sinh (a+b \sqrt{d x+c})-5(a+b \sqrt{d x+c})^{4} \cosh (a+b \sqrt{d x+c})+20(a+b \sqrt{d x+c})^{3} \sinh (a+b \sqrt{d x+c})\right.\right.\right. \\
& \left.\quad-60(a+b \sqrt{d x+c})^{2} \cosh (a+b \sqrt{d x+c})+120(a+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-120 \cosh (a+b \sqrt{d x+c})\right)-\frac{1}{b^{4}}(5 a((a \\
& \quad+b \sqrt{d x+c})^{4} \sinh (a+b \sqrt{d x+c})-4(a+b \sqrt{d x+c})^{3} \cosh (a+b \sqrt{d x+c})+12(a+b \sqrt{d x+c})^{2} \sinh (a+b \sqrt{d x+c})-24(a \\
& \quad+b \sqrt{d x+c}) \cosh (a+b \sqrt{d x+c})+24 \sinh (a+b \sqrt{d x+c})))+\frac{1}{b^{4}}\left(1 0 a ^ { 2 } \left((a+b \sqrt{d x+c})^{3} \sinh (a+b \sqrt{d x+c})-3(a\right.\right. \\
& \left.\left.\quad+b \sqrt{d x+c})^{2} \cosh (a+b \sqrt{d x+c})+6(a+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-6 \cosh (a+b \sqrt{d x+c})\right)\right) \\
& \quad-\frac{10 a^{3}\left((a+b \sqrt{d x+c})^{2} \sinh (a+b \sqrt{d x+c})-2(a+b \sqrt{d x+c}) \cosh (a+b \sqrt{d x+c})+2 \sinh (a+b \sqrt{d x+c})\right)}{b^{4}}
\end{aligned}
$$

$$
+b \sqrt{d x+c})^{3} \sinh (a+b \sqrt{d x+c})-3(a+b \sqrt{d x+c})^{2} \cosh (a+b \sqrt{d x+c})+6(a+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-6 \cosh (a
$$

$$
+b \sqrt{d x+c})))+\frac{6 c a\left((a+b \sqrt{d x+c})^{2} \sinh (a+b \sqrt{d x+c})-2(a+b \sqrt{d x+c}) \cosh (a+b \sqrt{d x+c})+2 \sinh (a+b \sqrt{d x+c})\right)}{b^{2}}
$$

$$
+\frac{5 a^{4}((a+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-\cosh (a+b \sqrt{d x+c}))}{b^{4}}
$$

$$
-\frac{6 a^{2} c((a+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-\cosh (a+b \sqrt{d x+c}))}{b^{2}}-\frac{a^{5} \sinh (a+b \sqrt{d x+c})}{b^{4}}+\frac{2 a^{3} c \sinh (a+b \sqrt{d x+c})}{b^{2}}+c^{2}((a
$$

$$
\left.\left.+b \sqrt{d x+c}) \sinh (a+b \sqrt{d x+c})-\cosh (a+b \sqrt{d x+c}))-c^{2} a \sinh (a+b \sqrt{d x+c})\right)\right)
$$

Problem 20: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right) \mathrm{d} x
$$

Optimal(type 3, 477 leaves, 23 steps):
$\frac{720 c \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{6} d^{3}}-\frac{120960(d x+c)^{1 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{8} d^{3}}-\frac{6 c^{2}(d x+c)^{1 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{2} d^{3}}$

$$
\begin{aligned}
& +\frac{360 c(d x+c)^{2 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{4} d^{3}}-\frac{20160(d x+c) \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{6} d^{3}}+\frac{30 c(d x+c)^{4 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{2} d^{3}} \\
& -\frac{1008(d x+c)^{5} / 3 \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{4} d^{3}}-\frac{24(d x+c)^{7 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{2} d^{3}}+\frac{120960 \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{9} d^{3}} \\
& +\frac{6 c^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3} d^{3}}-\frac{720 c(d x+c)^{1 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{5} d^{3}}+\frac{60480(d x+c)^{2 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{7} d^{3}} \\
& +\frac{3 c^{2}(d x+c)^{2 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b d^{3}}-\frac{120 c(d x+c) \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3} d^{3}}+\frac{5040(d x+c)^{4 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{5} d^{3}} \\
& -\frac{6 c(d x+c)^{5 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b d^{3}}+\frac{168(d x+c)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3} d^{3}}+\frac{3(d x+c)^{8 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b d^{3}}
\end{aligned}
$$

Result(type 3, 1814 leaves):

$$
\frac{1}{d^{3} b^{3}}\left(3 \left(a^{2} c^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-\frac{1}{b^{6}}\left(8 a \left(\left(a+b(d x+c)^{1 / 3}\right)^{7} \sinh \left(a+b(d x+c)^{1 / 3}\right)-7\left(a+b(d x+c)^{1 / 3}\right)^{6} \cosh \left(a+b(d x+c)^{1 / 3}\right)\right.\right.\right.\right.
$$

$$
+42\left(a+b(d x+c)^{1 / 3}\right)^{5} \sinh \left(a+b(d x+c)^{1 / 3}\right)-210\left(a+b(d x+c)^{1 / 3}\right)^{4} \cosh \left(a+b(d x+c)^{1 / 3}\right)+840\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh (a
$$

$$
\left.+b(d x+c)^{1 / 3}\right)-2520\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right)+5040\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-5040 \cosh (a
$$

$$
\left.\left.\left.+b(d x+c)^{1 / 3}\right)\right)\right)+\frac{1}{b^{6}}\left(2 8 a ^ { 2 } \left(\left(a+b(d x+c)^{1 / 3}\right)^{6} \sinh \left(a+b(d x+c)^{1 / 3}\right)-6\left(a+b(d x+c)^{1 / 3}\right)^{5} \cosh \left(a+b(d x+c)^{1 / 3}\right)\right.\right.
$$

$$
+30\left(a+b(d x+c)^{1 / 3}\right)^{4} \sinh \left(a+b(d x+c)^{1 / 3}\right)-120\left(a+b(d x+c)^{1 / 3}\right)^{3} \cosh \left(a+b(d x+c)^{1 / 3}\right)+360\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh (a
$$

$$
\left.\left.\left.+b(d x+c)^{1 / 3}\right)-720\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+720 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)-\frac{1}{b^{6}}\left(56 a^{3}((a+b(d x\right.
$$

$$
\left.+c)^{1 / 3}\right)^{5} \sinh \left(a+b(d x+c)^{1 / 3}\right)-5\left(a+b(d x+c)^{1 / 3}\right)^{4} \cosh \left(a+b(d x+c)^{1 / 3}\right)+20\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh \left(a+b(d x+c)^{1 / 3}\right)
$$

$\left.\left.-60\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right)+120\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-120 \cosh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)$
$+\frac{1}{b^{6}}\left(70 a^{4}\left(\left(a+b(d x+c)^{1 / 3}\right)^{4} \sinh \left(a+b(d x+c)^{1 / 3}\right)-4\left(a+b(d x+c)^{1 / 3}\right)^{3} \cosh \left(a+b(d x+c)^{1 / 3}\right)+12\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh (a\right.\right.$ $\left.\left.\left.+b(d x+c)^{1 / 3}\right)-24\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+24 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)-2 a c^{2}\left(\left(a+b(d x+c)^{1 / 3}\right) \sinh (a\right.$ $\left.\left.+b(d x+c)^{1 / 3}\right)-\cosh \left(a+b(d x+c)^{1 / 3}\right)\right)-\frac{1}{b^{6}}\left(56 a^{5}\left(\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh \left(a+b(d x+c)^{1 / 3}\right)-3\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh (a\right.\right.$ $\left.\left.\left.+b(d x+c)^{1 / 3}\right)+6\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-6 \cosh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)-\frac{1}{b^{3}}\left(2 c\left(\left(a+b(d x+c)^{1 / 3}\right)^{5} \sinh (a\right.\right.$ $\left.+b(d x+c)^{1 / 3}\right)-5\left(a+b(d x+c)^{1 / 3}\right)^{4} \cosh \left(a+b(d x+c)^{1 / 3}\right)+20\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh \left(a+b(d x+c)^{1 / 3}\right)-60(a+b(d x$
$\left.\left.\left.+c)^{1 / 3}\right)^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right)+120\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-120 \cosh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)$
$+\frac{28 a^{6}\left(\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-2\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+2 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{6}}$
$-\frac{8 a^{7}\left(\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-\cosh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{6}}+\frac{2 a^{5} c \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3}}+c^{2}((a+b(d x$
$\left.\left.+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-2\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+2 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)+\frac{1}{b^{6}}((a$
$\left.+b(d x+c)^{1 / 3}\right)^{8} \sinh \left(a+b(d x+c)^{1 / 3}\right)-8\left(a+b(d x+c)^{1 / 3}\right)^{7} \cosh \left(a+b(d x+c)^{1 / 3}\right)+56\left(a+b(d x+c)^{1 / 3}\right)^{6} \sinh \left(a+b(d x+c)^{1 / 3}\right)$
$-336\left(a+b(d x+c)^{1 / 3}\right)^{5} \cosh \left(a+b(d x+c)^{1 / 3}\right)+1680\left(a+b(d x+c)^{1 / 3}\right)^{4} \sinh \left(a+b(d x+c)^{1 / 3}\right)-6720\left(a+b(d x+c)^{1 / 3}\right)^{3} \cosh (a$ $\left.+b(d x+c)^{1 / 3}\right)+20160\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-40320\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+40320 \sinh (a$ $\left.\left.+b(d x+c)^{1 / 3}\right)\right)+\frac{a^{8} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{6}}+\frac{1}{b^{3}}\left(10 c a\left(\left(a+b(d x+c)^{1 / 3}\right)^{4} \sinh \left(a+b(d x+c)^{1 / 3}\right)-4(a+b(d x\right.\right.$ $\left.+c)^{1 / 3}\right)^{3} \cosh \left(a+b(d x+c)^{1 / 3}\right)+12\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-24\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)$ $\left.\left.+24 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)-\frac{1}{b^{3}}\left(20 c a^{2}\left(\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh \left(a+b(d x+c)^{1 / 3}\right)-3\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh (a+b(d x\right.\right.$
$\left.\left.\left.+c)^{1 / 3}\right)+6\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-6 \cosh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)$
$+\frac{20 a^{3} c\left(\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-2\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+2 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{3}}$
$\left.\left.-\frac{10 a^{4} c\left(\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-\cosh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{3}}\right)\right)$

Problem 21: Result more than twice size of optimal antiderivative.

$$
\int x \cosh \left(a+b(d x+c)^{1 / 3}\right) \mathrm{d} x
$$

Optimal(type 3, 231 leaves, 13 steps):

$$
\begin{aligned}
& -\frac{360 \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{6} d^{2}}+\frac{6 c(d x+c)^{1 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{2} d^{2}}-\frac{180(d x+c)^{2 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{4} d^{2}} \\
& -\frac{15(d x+c)^{4 / 3} \cosh \left(a+b(d x+c)^{1 / 3}\right)}{b^{2} d^{2}}-\frac{6 c \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3} d^{2}}+\frac{360(d x+c)^{1 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{5} d^{2}} \\
& -\frac{3 c(d x+c)^{2 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b d^{2}}+\frac{60(d x+c) \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3} d^{2}}+\frac{3(d x+c)^{5 / 3} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b d^{2}}
\end{aligned}
$$

Result(type 3, 658 leaves):

$$
\frac{1}{d^{2} b^{3}}\left(3 \left(\frac { 1 } { b ^ { 3 } } \left(\left(a+b(d x+c)^{1 / 3}\right)^{5} \sinh \left(a+b(d x+c)^{1 / 3}\right)-5\left(a+b(d x+c)^{1 / 3}\right)^{4} \cosh \left(a+b(d x+c)^{1 / 3}\right)+20\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh (a\right.\right.\right.
$$

$$
\left.+b(d x+c)^{1 / 3}\right)-60\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right)+120\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-120 \cosh (a
$$

$$
\left.\left.+b(d x+c)^{1 / 3}\right)\right)-\frac{1}{b^{3}}\left(5 a \left(\left(a+b(d x+c)^{1 / 3}\right)^{4} \sinh \left(a+b(d x+c)^{1 / 3}\right)-4\left(a+b(d x+c)^{1 / 3}\right)^{3} \cosh \left(a+b(d x+c)^{1 / 3}\right)\right.\right.
$$

$$
\left.\left.+12\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-24\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+24 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)
$$

$$
+\frac{1}{b^{3}}\left(1 0 a ^ { 2 } \left(\left(a+b(d x+c)^{1 / 3}\right)^{3} \sinh \left(a+b(d x+c)^{1 / 3}\right)-3\left(a+b(d x+c)^{1 / 3}\right)^{2} \cosh \left(a+b(d x+c)^{1 / 3}\right)+6\left(a+b(d x+c)^{1 / 3}\right) \sinh (a\right.\right.
$$

$$
\left.\left.\left.+b(d x+c)^{1 / 3}\right)-6 \cosh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)
$$

$$
-\frac{10 a^{3}\left(\left(a+b(d x+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-2\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+2 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{3}}
$$

$$
+\frac{5 a^{4}\left(\left(a+b(d x+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-\cosh \left(a+b(d x+c)^{1 / 3}\right)\right)}{b^{3}}-\frac{a^{5} \sinh \left(a+b(d x+c)^{1 / 3}\right)}{b^{3}}-c((a+b(d x
$$

$\left.\left.+c)^{1 / 3}\right)^{2} \sinh \left(a+b(d x+c)^{1 / 3}\right)-2\left(a+b(d x+c)^{1 / 3}\right) \cosh \left(a+b(d x+c)^{1 / 3}\right)+2 \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)+2 a c((a+b(d x$ $\left.\left.\left.\left.+c)^{1 / 3}\right) \sinh \left(a+b(d x+c)^{1 / 3}\right)-\cosh \left(a+b(d x+c)^{1 / 3}\right)\right)-a^{2} c \sinh \left(a+b(d x+c)^{1 / 3}\right)\right)\right)$

Test results for the 11 problems in "6.2.4 (d+e $x)^{\wedge} m \cosh \left(a+b x+c x^{\wedge} 2\right)^{\wedge} n . t x t "$
Problem 4: Unable to integrate problem.

$$
\int\left(\frac{\cosh \left(-c x^{2}+b x+a\right)}{x^{2}}-\frac{b \sinh \left(-c x^{2}+b x+a\right)}{x}\right) \mathrm{d} x
$$

Optimal(type 4, 82 leaves, 7 steps):

$$
-\frac{\cosh \left(-c x^{2}+b x+a\right)}{x}+\frac{\mathrm{e}^{a+\frac{b^{2}}{4 c}} \operatorname{erf}\left(\frac{-2 c x+b}{2 \sqrt{c}}\right) \sqrt{c} \sqrt{\pi}}{2}-\frac{\mathrm{e}^{-a-\frac{b^{2}}{4 c}} \operatorname{erfi}\left(\frac{-2 c x+b}{2 \sqrt{c}}\right) \sqrt{c} \sqrt{\pi}}{2}
$$

Result(type 8, 37 leaves):

$$
\int\left(\frac{\cosh \left(-c x^{2}+b x+a\right)}{x^{2}}-\frac{b \sinh \left(-c x^{2}+b x+a\right)}{x}\right) \mathrm{d} x
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int(e x+d) \cosh \left(c x^{2}+b x+a\right) \mathrm{d} x
$$

Optimal(type 4, 100 leaves, 6 steps):

$$
\frac{e \sinh \left(c x^{2}+b x+a\right)}{2 c}+\frac{(-b e+2 c d) \mathrm{e}^{-a+\frac{b^{2}}{4 c}} \operatorname{erf}\left(\frac{2 c x+b}{2 \sqrt{c}}\right) \sqrt{\pi}}{8 c^{3 / 2}}+\frac{(-b e+2 c d) \mathrm{e}^{a-\frac{b^{2}}{4 c}} \operatorname{erfi}\left(\frac{2 c x+b}{2 \sqrt{c}}\right) \sqrt{\pi}}{8 c^{3 / 2}}
$$

Result(type 4, 210 leaves):
$\frac{d \sqrt{\pi} \mathrm{e}^{-\frac{4 c a-b^{2}}{4 c}} \operatorname{erf}\left(\sqrt{c} x+\frac{b}{2 \sqrt{c}}\right)}{4 \sqrt{c}}-\frac{e \mathrm{e}^{-c x^{2}-b x-a}}{4 c}-\frac{e b \sqrt{\pi} \mathrm{e}^{-\frac{4 c a-b^{2}}{4 c}} \operatorname{erf}\left(\sqrt{c} x+\frac{b}{2 \sqrt{c}}\right)}{8 c^{3 / 2}}-\frac{d \sqrt{\pi} \mathrm{e}^{\frac{4 c a-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c} x+\frac{b}{2 \sqrt{-c}}\right)}{4 \sqrt{-c}}$

$$
+\frac{e \mathrm{e}^{c x^{2}+b x+a}}{4 c}+\frac{e b \sqrt{\pi} \mathrm{e}^{\frac{4 c a-b^{2}}{4 c}} \operatorname{erf}\left(-\sqrt{-c} x+\frac{b}{2 \sqrt{-c}}\right)}{8 c \sqrt{-c}}
$$

Test results for the 89 problems in " 6.2 .5 Hyperbolic cosine functions.txt"

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \cosh (b x+a)^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 85 leaves, 3 steps):

$$
-\frac{10 \text { I } \sqrt{\cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \text { EllipticF }\left(\operatorname{Isinh}\left(\frac{b x}{2}+\frac{a}{2}\right), \sqrt{2}\right)}{21 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right) b}+\frac{2 \cosh (b x+a)^{5 / 2} \sinh (b x+a)}{7 b}+\frac{10 \sinh (b x+a) \sqrt{\cosh (b x+a)}}{21 b}
$$

Result(type 4, 200 leaves):
$\left(2 \sqrt{\left(2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}-1\right) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}}\left(48 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{9}-120 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{7}+128 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{5}-72 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{3}\right.\right.$

$$
\left.\left.+5 \sqrt{-\sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \sqrt{-2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}+1} \operatorname{EllipticF}\left(\cosh \left(\frac{b x}{2}+\frac{a}{2}\right), \sqrt{2}\right)+16 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)\right)\right) /
$$

$$
\left(21 \sqrt{2 \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{4}+\sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \sinh \left(\frac{b x}{2}+\frac{a}{2}\right) \sqrt{2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}-1} b\right)
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{\cosh (b x+a)} d x
$$

Optimal(type 4, 46 leaves, 1 step):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{b x}{2}+\frac{a}{2}\right), \sqrt{2}\right)}{\cosh \left(\frac{b x}{2}+\frac{a}{2}\right) b}
$$

Result(type 4, 134 leaves):

$$
-\frac{2 \sqrt{\left(2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}-1\right) \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \sqrt{-\sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \sqrt{-2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}+1} \operatorname{EllipticE}\left(\cosh \left(\frac{b x}{2}+\frac{a}{2}\right), \sqrt{2}\right)}{\sqrt{2 \sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{4}+\sinh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}} \sinh \left(\frac{b x}{2}+\frac{a}{2}\right) \sqrt{2 \cosh \left(\frac{b x}{2}+\frac{a}{2}\right)^{2}-1} b}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int(a \cosh (x))^{7 / 2} \mathrm{~d} x
$$

Optimal(type 4, 66 leaves, 4 steps):

$$
\frac{2 a(a \cosh (x))^{5 / 2} \sinh (x)}{7}-\frac{10 \mathrm{I} a^{4} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (x)}}{21 \cosh \left(\frac{x}{2}\right) \sqrt{a \cosh (x)}}+\frac{10 a^{3} \sinh (x) \sqrt{a \cosh (x)}}{21}
$$

Result(type 4, 144 leaves):

$$
\begin{aligned}
& \frac{1}{21 \sqrt{a\left(2 \sinh \left(\frac{x}{2}\right)^{4}+\sinh \left(\frac{x}{2}\right)^{2}\right)} \sinh \left(\frac{x}{2}\right) \sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right)}}\left(\sqrt { a (2 \operatorname { c o s h } (\frac { x } { 2 }) ^ { 2 } - 1) \operatorname { s i n h } (\frac { x } { 2 }) ^ { 2 } } a ^ { 4 } \left(96 \cosh \left(\frac{x}{2}\right)^{9}-240 \cosh \left(\frac{x}{2}\right)^{7}\right.\right. \\
& \left.\left.+256 \cosh \left(\frac{x}{2}\right)^{5}+5 \sqrt{2} \sqrt{-2 \cosh \left(\frac{x}{2}\right)^{2}+1} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)-144 \cosh \left(\frac{x}{2}\right)^{3}+32 \cosh \left(\frac{x}{2}\right)\right)\right)^{2}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int(a \cosh (x))^{5 / 2} \mathrm{~d} x
$$

Optimal(type 4, 53 leaves, 3 steps):

$$
\frac{2 a(a \cosh (x))^{3 / 2} \sinh (x)}{5}-\frac{6 \mathrm{I} a^{2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{a \cosh (x)}}{5 \cosh \left(\frac{x}{2}\right) \sqrt{\cosh (x)}}
$$

Result(type 4, 183 leaves):

$$
\begin{aligned}
& \frac{1}{5 \sqrt{a\left(2 \sinh \left(\frac{x}{2}\right)^{4}+\sinh \left(\frac{x}{2}\right)^{2}\right)} \sinh \left(\frac{x}{2}\right) \sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right)}}\left(\sqrt { a (2 \operatorname { c o s h } (\frac { x } { 2 }) ^ { 2 } - 1) \operatorname { s i n h } (\frac { x } { 2 }) ^ { 2 } } a ^ { 3 } \left(16 \cosh \left(\frac{x}{2}\right) \sinh \left(\frac{x}{2}\right)^{6}\right.\right. \\
& +16 \sinh \left(\frac{x}{2}\right)^{4} \cosh \left(\frac{x}{2}\right)+3 \sqrt{2} \sqrt{-2 \sinh \left(\frac{x}{2}\right)^{2}-1 \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)} \\
& \left.\left.-6 \sqrt{2} \sqrt{-2 \sinh \left(\frac{x}{2}\right)^{2}-1} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)+4 \sinh \left(\frac{x}{2}\right)^{2} \cosh \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int(a \cosh (x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 53 leaves, 3 steps):

$$
-\frac{2 \mathrm{I} a^{2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \mathrm{EllipticF}\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (x)}}{3 \cosh \left(\frac{x}{2}\right) \sqrt{a \cosh (x)}}+\frac{2 a \sinh (x) \sqrt{a \cosh (x)}}{3}
$$

Result(type 4, 129 leaves):

$$
\begin{aligned}
& \frac{1}{3 \sqrt{a\left(2 \sinh \left(\frac{x}{2}\right)^{4}+\sinh \left(\frac{x}{2}\right)^{2}\right)} \sinh \left(\frac{x}{2}\right) \sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right)}}\left(\sqrt { a (2 \operatorname { c o s h } (\frac { x } { 2 }) ^ { 2 } - 1) \operatorname { s i n h } (\frac { x } { 2 }) ^ { 2 } } a ^ { 2 } \left(8 \sinh \left(\frac{x}{2}\right)^{4} \cosh \left(\frac{x}{2}\right)\right.\right. \\
& \left.\left.+\sqrt{2} \sqrt{-2 \sinh \left(\frac{x}{2}\right)^{2}-1} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)+4 \sinh \left(\frac{x}{2}\right)^{2} \cosh \left(\frac{x}{2}\right)\right)\right)
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a \cosh (x)} \mathrm{d} x
$$

Optimal(type 4, 38 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{a \cosh (x)}}{\cosh \left(\frac{x}{2}\right) \sqrt{\cosh (x)}}
$$

Result(type 4, 117 leaves):

$$
\frac{\sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right) \sinh \left(\frac{x}{2}\right)^{2}} a \sqrt{2} \sqrt{-2 \cosh \left(\frac{x}{2}\right)^{2}+1} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}}\left(\operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)-2 \text { EllipticE }\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)\right)}{\sqrt{a\left(2 \sinh \left(\frac{x}{2}\right)^{4}+\sinh \left(\frac{x}{2}\right)^{2}\right)} \sinh \left(\frac{x}{2}\right) \sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right)}}
$$

Problem 9: Result more than twice size of optimal antiderivative

$$
\int \frac{1}{\sqrt{a \cosh (x)}} \mathrm{d} x
$$

Optimal(type 4, 38 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticF }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2}\right) \sqrt{\cosh (x)}}{\cosh \left(\frac{x}{2}\right) \sqrt{a \cosh (x)}}
$$

Result(type 4, 99 leaves):

$$
\frac{\sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right) \sinh \left(\frac{x}{2}\right)^{2}} \sqrt{2} \sqrt{-2 \cosh \left(\frac{x}{2}\right)^{2}+1} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{2}, \frac{\sqrt{2}}{2}\right)}{\sqrt{a\left(2 \sinh \left(\frac{x}{2}\right)^{4}+\sinh \left(\frac{x}{2}\right)^{2}\right)} \sinh \left(\frac{x}{2}\right) \sqrt{a\left(2 \cosh \left(\frac{x}{2}\right)^{2}-1\right)}}
$$

Problem 10: Unable to integrate problem.

$$
\int(b \cosh (d x+c))^{n} \mathrm{~d} x
$$

Optimal(type 5, 65 leaves, 1 step):

$$
-(b \cosh (d x+c))^{n+1} \text { hypergeom }\left(\left[\frac{1}{2}, \frac{n}{2}+\frac{1}{2}\right],\left[\frac{3}{2}+\frac{n}{2}\right], \cosh (d x+c)^{2}\right) \sinh (d x+c)
$$

$$
b d(n+1) \sqrt{-\sinh (d x+c)^{2}}
$$

Result(type 8, 12 leaves):

$$
\int(b \cosh (d x+c))^{n} \mathrm{~d} x
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\sqrt{a+a \cosh (d x+c)}} \mathrm{d} x
$$

Optimal(type 3, 37 leaves, 2 steps):

$$
\frac{\arctan \left(\frac{\sinh (d x+c) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \cosh (d x+c)}}\right) \sqrt{2}}{d \sqrt{a}}
$$

Result(type 3, 102 leaves):

$$
-\frac{\cosh \left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} \ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{c}{2}+\frac{d x}{2}\right)}\right) \sqrt{2}}{\sqrt{-a} \sinh \left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{a \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} d}
$$

Problem 16: Result more than twice size of optimal antiderivative.

Optimal(type 3, 88 leaves, 4 steps):

$$
\frac{\sinh (d x+c)}{4 d(a+a \cosh (d x+c))^{5 / 2}}+\frac{3 \sinh (d x+c)}{16 a d(a+a \cosh (d x+c))^{3 / 2}}+\frac{3 \arctan \left(\frac{\sinh (d x+c) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \cosh (d x+c)}}\right) \sqrt{2}}{32 a^{5 / 2} d}
$$

Result(type 3, 177 leaves):

$$
\begin{aligned}
& \left.-\frac{1}{32 a^{3} \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{3} \sqrt{-a} \sinh \left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{a \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} d} \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}}\right) 3 \ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{c}{2}+\frac{d x}{2}\right)} \sqrt{a \cosh (c}\right) \\
& \left.\left.\left.12+\frac{d x}{2}\right)^{4}-3 \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2} \sqrt{-a}-2 \sqrt{-a} \sqrt{a \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}}\right) \sqrt{2}\right)
\end{aligned}
$$

Problem 24: Result more than twice size of optimal antiderivative.

$$
\int(a+b \cosh (x))^{3 / 2} \mathrm{~d} x
$$

Optimal(type 4, 144 leaves, 6 steps):
$\frac{2 b \sinh (x) \sqrt{a+b \cosh (x)}}{3}-\frac{8 \mathrm{I} a \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(I \sinh \left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{a+b \cosh (x)}}{3 \cosh \left(\frac{x}{2}\right) \sqrt{\frac{a+b \cosh (x)}{a+b}}}$

$$
+\frac{2 \mathrm{I}\left(a^{2}-b^{2}\right) \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticF }\left(\operatorname{Isinh}\left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{\frac{a+b \cosh (x)}{a+b}}}{3 \cosh \left(\frac{x}{2}\right) \sqrt{a+b \cosh (x)}}
$$

Result(type 4, 457 leaves):
$\left(2\left(4 \sqrt{-\frac{2 b}{a-b}} b^{2} \cosh \left(\frac{x}{2}\right) \sinh \left(\frac{x}{2}\right)^{4}+\left(2 \sqrt{-\frac{2 b}{a-b}} a b+2 \sqrt{-\frac{2 b}{a-b}} b^{2}\right) \sinh \left(\frac{x}{2}\right)^{2} \cosh \left(\frac{x}{2}\right)\right.\right.$
$+3 a^{2} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b}} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}}$ EllipticF $\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{-\frac{2(a-b)}{b}}}{2}\right)$

$$
+4 a b \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b}} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \text { EllipticF }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{-\frac{2(a-b)}{b}}}{2}\right)
$$

$$
\begin{aligned}
& +b^{2} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \text { EllipticF }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{-\frac{2(a-b)}{b}}}{2}\right)} \\
& -8 \sqrt{\left.\left.\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticE}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{-\frac{2(a-b)}{b}}}{2}\right) a b\right) \sqrt{\left(2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b\right) \sinh \left(\frac{x}{2}\right)^{2}}\right)} \\
& \left(3 \sqrt{-\frac{2 b}{a-b}} \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}} \sinh \left(\frac{x}{2}\right) \sqrt{2 \sinh \left(\frac{x}{2}\right)^{2} b+a+b}\right)
\end{aligned}
$$

Problem 25: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \cosh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 86 leaves, 2 steps):

$$
\frac{-2 \mathrm{I} \sqrt{\cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{c}{2}+\frac{d x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{a+b \cosh (d x+c)}}{\cosh \left(\frac{c}{2}+\frac{d x}{2}\right) d \sqrt{\frac{a+b \cosh (d x+c)}{a+b}}}
$$

Result(type 4, 275 leaves):

$$
\left(2 \left(a \text { EllipticF } (\operatorname { c o s h } (\frac { c } { 2 } + \frac { d x } { 2 }) \sqrt { - \frac { 2 b } { a - b } } , \frac { \sqrt { - \frac { 2 (a - b) } { b } } } { 2 }) + b \operatorname { E l l i p t i c F } (\operatorname { c o s h } (\frac { c } { 2 } + \frac { d x } { 2 }) \sqrt { - \frac { 2 b } { a - b } } , \frac { \sqrt { - \frac { 2 (a - b) } { b } } } { 2 }) - 2 b \text { EllipticE } \left(\operatorname { c o s h } \left(\frac{c}{2}\right.\right.\right.\right.
$$

$$
\left.\left.\left.+\frac{d x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{-\frac{2(a-b)}{b}}}{2}\right)\right)
$$

$$
\left.\sqrt{-\sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} \sqrt{\frac{2 \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2} b+a-b}{a-b}} \sqrt{\left(2 \cosh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2} b+a-b\right) \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}}\right) /
$$

$$
\left(\sqrt{-\frac{2 b}{a-b}} \sqrt{2 b \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{4}+(a+b) \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2}} \sinh \left(\frac{c}{2}+\frac{d x}{2}\right) \sqrt{2 \sinh \left(\frac{c}{2}+\frac{d x}{2}\right)^{2} b+a+b} d\right)
$$

Problem 29: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cosh (x)}{\sqrt{a+a \cosh (x)}} \mathrm{d} x
$$

Optimal(type 3, 45 leaves, 3 steps):

$$
\frac{(A-B) \arctan \left(\frac{\sinh (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \cosh (x)}}\right) \sqrt{2}}{\sqrt{a}}+\frac{2 B \sinh (x)}{\sqrt{a+a \cosh (x)}}
$$

Result(type 3, 127 leaves):

$$
-\frac{\cosh \left(\frac{x}{2}\right) \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}}\left(\ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{x}{2}\right)}\right) A a-2 B \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}} \sqrt{-a}-\ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{x}{2}\right)}\right) B a\right) \sqrt{2}}{\sqrt{-a} a \sinh \left(\frac{x}{2}\right) \sqrt{a \cosh \left(\frac{x}{2}\right)^{2}}}
$$

Problem 30: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cosh (x)}{(a+a \cosh (x))^{3 / 2}} \mathrm{~d} x
$$

Optimal (type 3, 50 leaves, 3 steps):

$$
\frac{(A-B) \sinh (x)}{2(a+a \cosh (x))^{3 / 2}}+\frac{(A+3 B) \arctan \left(\frac{\sinh (x) \sqrt{a} \sqrt{2}}{2 \sqrt{a+a \cosh (x)}}\right) \sqrt{2}}{4 a^{3 / 2}}
$$

Result(type 3, 158 leaves):

$$
\begin{aligned}
& -\frac{1}{4 \cosh \left(\frac{x}{2}\right) a^{2} \sqrt{-a} \sinh \left(\frac{x}{2}\right) \sqrt{a \cosh \left(\frac{x}{2}\right)^{2}}}\left(\sqrt { a \operatorname { s i n h } (\frac { x } { 2 }) ^ { 2 } } \left(\ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{x}{2}\right)}\right) A a \cosh \left(\frac{x}{2}\right)^{2}\right.\right. \\
& \left.\left.+3 \ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}}-a\right)}{\cosh \left(\frac{x}{2}\right)}\right) B a \cosh \left(\frac{x}{2}\right)^{2}-A \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}} \sqrt{-a}+B \sqrt{a \sinh \left(\frac{x}{2}\right)^{2}} \sqrt{-a}\right) \sqrt{2}\right)
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cosh (x)}{(a+b \cosh (x))^{3 / 2}} d x
$$

Optimal(type 4, 178 leaves, 6 steps):

$$
\begin{aligned}
& -\frac{2(A b-a B) \sinh (x)}{\left(a^{2}-b^{2}\right) \sqrt{a+b \cosh (x)}}-\frac{2 \mathrm{I}(A b-a B) \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(\mathrm{I} \sinh \left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{a+b \cosh (x)}}{\cosh \left(\frac{x}{2}\right) b\left(a^{2}-b^{2}\right) \sqrt{\frac{a+b \cosh (x)}{a+b}}} \\
& -\frac{2 \mathrm{I} B \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\operatorname{Isinh}\left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{\frac{a+b \cosh (x)}{a+b}}}{\cosh \left(\frac{x}{2}\right) b \sqrt{a+b \cosh (x)}}
\end{aligned}
$$

Result(type 4, 482 leaves):

$$
\begin{aligned}
& \frac{1}{\sinh \left(\frac{x}{2}\right) \sqrt{2 \sinh \left(\frac{x}{2}\right)^{2} b+a+b}} \sqrt{\left(2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b\right) \sinh \left(\frac{x}{2}\right)^{2}}\left(\frac{1}{b \sqrt{-\frac{2 b}{a-b}} \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}}(2 B\right. \\
& \sqrt{\frac{2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b}{a-b} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\left.\left.\sqrt{\frac{-2 a+2 b}{b}}\right)\right)}{2}\right)} .
\end{aligned}
$$

$$
+\frac{1}{b \sqrt{-\frac{2 b}{a-b}} \sinh \left(\frac{x}{2}\right)^{2}\left(2 \sinh \left(\frac{x}{2}\right)^{2} b+a+b\right)\left(a^{2}-b^{2}\right)}\left(2(A b-a B) \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}\right)
$$

$$
-2 \sqrt{-\frac{2 b}{a-b}} b \cosh \left(\frac{x}{2}\right) \sinh \left(\frac{x}{2}\right)^{2}+\text { EllipticF }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} a}
$$

$$
+ \text { EllipticF }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} b-2 \text { EllipticE }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, ~, ~\right.}
$$

$$
\left.\left.\left.\left.\frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} b}\right)\right)\right)
$$

Problem 35: Result more than twice size of optimal antiderivative.

$$
\int \frac{A+B \cosh (x)}{(a+b \cosh (x))^{5 / 2}} \mathrm{~d} x
$$

$$
\begin{aligned}
& \text { Optimal (type 4, } 247 \text { leaves, } 7 \text { steps): } \\
& -\frac{2(A b-a B) \sinh (x)}{3\left(a^{2}-b^{2}\right)(a+b \cosh (x))^{3 / 2}}-\frac{2\left(4 A a b-a^{2} B-3 B b^{2}\right) \sinh (x)}{3\left(a^{2}-b^{2}\right)^{2} \sqrt{a+b \cosh (x)}} \\
& -\frac{2 \mathrm{I}\left(4 A a b-a^{2} B-3 B b^{2}\right) \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticE}\left(\operatorname{Isinh}\left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{a+b \cosh (x)}}{3 \cosh \left(\frac{x}{2}\right) b\left(a^{2}-b^{2}\right)^{2} \sqrt{\frac{a+b \cosh (x)}{a+b}}} \\
& +\frac{2 \mathrm{I}(A b-a B) \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\operatorname{Isinh}\left(\frac{x}{2}\right), \sqrt{2} \sqrt{\frac{b}{a+b}}\right) \sqrt{\frac{a+b \cosh (x)}{a+b}}}{3 \cosh \left(\frac{x}{2}\right) b\left(a^{2}-b^{2}\right) \sqrt{a+b \cosh (x)}}
\end{aligned}
$$

Result(type 4, 794 leaves):
$\frac{1}{\sinh \left(\frac{x}{2}\right) \sqrt{2 \sinh \left(\frac{x}{2}\right)^{2} b+a+b}} \sqrt{\left(2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b\right) \sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{1}{b \sqrt{-\frac{2 b}{a-b}} \sinh \left(\frac{x}{2}\right)^{2}\left(2 \sinh \left(\frac{x}{2}\right)^{2} b+a+b\right)\left(a^{2}-b^{2}\right)}} 2 B$

$$
\sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}\left(- 2 \sqrt { - \frac { 2 b } { a - b } } b \operatorname { c o s h } (\frac { x } { 2 }) \operatorname { s i n h } (\frac { x } { 2 }) ^ { 2 } + \text { EllipticF } \left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}},\right.\right.
$$

$$
\left.\frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b}} a+\text { EllipticF }\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}\right.
$$

$$
\begin{aligned}
& \left.\frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b}} b-2 \operatorname{EllipticE}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}},\right. \\
& \left.\frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right) \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \sqrt{\left.\frac{2 b \sinh \left(\frac{x}{2}\right)^{2}}{a-b}+\frac{a+b}{a-b} b\right)}+\frac{1}{b}\left(2 (A b - a B) \left(-\frac{\cosh \left(\frac{x}{2}\right) \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}}{6 b(a-b)(a+b)\left(\cosh \left(\frac{x}{2}\right)^{2}+\frac{a-b}{2 b}\right)^{2}}\right.\right. \\
& -\frac{8 b \sinh \left(\frac{x}{2}\right)^{2} \cosh \left(\frac{x}{2}\right) a}{3(a-b)^{2}(a+b)^{2} \sqrt{\left(2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b\right) \sinh \left(\frac{x}{2}\right)^{2}}} \\
& +\frac{(3 a-b) \sqrt{\frac{2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b}{a-b}} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}} \operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right.}{\left(3 a^{3}+3 a^{2} b-3 a b^{2}-3 b^{3}\right) \sqrt{-\frac{2 b}{a-b}} \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}}-(16 a b(-a \\
& +b) \sqrt{\frac{2 \cosh \left(\frac{x}{2}\right)^{2} b+a-b}{a-b}} \sqrt{-\sinh \left(\frac{x}{2}\right)^{2}}\left(\operatorname{EllipticF}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}}, \frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right)-\operatorname{EllipticE}\left(\cosh \left(\frac{x}{2}\right) \sqrt{-\frac{2 b}{a-b}},\right.\right. \\
& \left.\left.\left.\left.\left.\frac{\sqrt{\frac{-2 a+2 b}{b}}}{2}\right)\right) /\left(3(a+b)^{2}(a-b)^{2} \sqrt{-\frac{2 b}{a-b}} \sqrt{2 b \sinh \left(\frac{x}{2}\right)^{4}+(a+b) \sinh \left(\frac{x}{2}\right)^{2}}(2 a-2 b)\right)\right)\right)\right)
\end{aligned}
$$

Problem 38: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(a \cosh (x)^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

Optimal(type 3, 34 leaves, 3 steps):

$$
\frac{\arctan (\sinh (x)) \cosh (x)}{2 a \sqrt{a \cosh (x)^{2}}}+\frac{\tanh (x)}{2 a \sqrt{a \cosh (x)^{2}}}
$$

Result(type 3, 81 leaves):

$$
\frac{\sqrt{a \sinh (x)^{2}}\left(-\ln \left(\frac{2\left(\sqrt{-a} \sqrt{a \sinh (x)^{2}}-a\right)}{\cosh (x)}\right) a \cosh (x)^{2}+\sqrt{-a} \sqrt{a \sinh (x)^{2}}\right)}{2 a^{2} \cosh (x) \sqrt{-a} \sinh (x) \sqrt{a \cosh (x)^{2}}}
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{1}{\sqrt{a \cosh (x)^{3}}} \mathrm{~d} x
$$

Optimal(type 4, 55 leaves, 3 steps):

$$
\frac{2 I \cosh (x)^{3 / 2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(I \sinh \left(\frac{x}{2}\right), \sqrt{2}\right)}{\cosh \left(\frac{x}{2}\right) \sqrt{a \cosh (x)^{3}}}+\frac{2 \cosh (x) \sinh (x)}{\sqrt{a \cosh (x)^{3}}}
$$

Result(type 8, 10 leaves):

$$
\int \frac{1}{\sqrt{a \cosh (x)^{3}}} \mathrm{~d} x
$$

Problem 40: Unable to integrate problem.

$$
\int \frac{1}{\left(a \cosh (x)^{3}\right)^{5 / 2}} \mathrm{~d} x
$$

Optimal(type 4, 114 leaves, 6 steps):
$\frac{154 \mathrm{I} \cosh (x)^{3 / 2} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(I \sinh \left(\frac{x}{2}\right), \sqrt{2}\right)}{195 \cosh \left(\frac{x}{2}\right) a^{2} \sqrt{a \cosh (x)^{3}}}+\frac{154 \cosh (x) \sinh (x)}{195 a^{2} \sqrt{a \cosh (x)^{3}}}+\frac{154 \tanh (x)}{585 a^{2} \sqrt{a \cosh (x)^{3}}}+\frac{22 \operatorname{sech}(x)^{2} \tanh (x)}{117 a^{2} \sqrt{a \cosh (x)^{3}}}+\frac{2 \operatorname{sech}(x)^{4} \tanh (x)}{13 a^{2} \sqrt{a \cosh (x)^{3}}}$
Result(type 8, 10 leaves):

$$
\int \frac{1}{\left(a \cosh (x)^{3}\right)^{5 / 2}} \mathrm{~d} x
$$

Problem 44: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{8}}{a+a \cosh (x)} \mathrm{d} x
$$

Optimal(type 3, 47 leaves, 5 steps):

$$
\frac{5 x}{16 a}-\frac{5 \cosh (x) \sinh (x)}{16 a}+\frac{5 \cosh (x) \sinh (x)^{3}}{24 a}-\frac{\cosh (x) \sinh (x)^{5}}{6 a}+\frac{\sinh (x)^{7}}{7 a}
$$

Result(type 3, 207 leaves):

$$
\begin{aligned}
& -\frac{1}{7 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{7}}+\frac{2}{3 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{6}}-\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}+\frac{1}{4 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{11}{24 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{1}{8 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& -\frac{5}{16 a\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{5 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{16 a}-\frac{1}{7 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{7}}-\frac{2}{3 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{6}}-\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{5}} \\
& -\frac{1}{4 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}+\frac{11}{24 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{1}{8 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{5 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{16 a\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{5}{16 a}
\end{aligned}
$$

Problem 45: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{5}}{a+a \cosh (x)} \mathrm{d} x
$$

Optimal (type 3, 29 leaves, 3 steps):

$$
-\frac{2(a-a \cosh (x))^{3}}{3 a^{4}}+\frac{(a-a \cosh (x))^{4}}{4 a^{5}}
$$

Result(type 3, 86 leaves):

$$
\begin{aligned}
& \frac{1}{a}\left(32\left(\frac{1}{128\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}-\frac{5}{192\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{5}{256\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{5}{256\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{5}{192\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}+\frac{5}{256\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{5}{256\left(\tanh \left(\frac{x}{2}\right)-1\right)}\right)\right. \\
& \left.\quad+\frac{5\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}{12}\right)
\end{aligned}
$$

Problem 46: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{4}}{a+a \cosh (x)} \mathrm{d} x
$$

Optimal (type 3, 25 leaves, 3 steps):

$$
\frac{x}{2 a}-\frac{\cosh (x) \sinh (x)}{2 a}+\frac{\sinh (x)^{3}}{3 a}
$$

Result(type 3, 102 leaves):

$$
\begin{aligned}
& -\frac{1}{3 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 a}-\frac{1}{3 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{1}{a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}} \\
& -\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 a}
\end{aligned}
$$

Problem 47: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{7}}{a+b \cosh (x)} \mathrm{d} x
$$

Optimal (type 3, 130 leaves, 3 steps):

$$
\begin{aligned}
& -\frac{a\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \cosh (x)}{b^{6}}+\frac{\left(a^{4}-3 a^{2} b^{2}+3 b^{4}\right) \cosh (x)^{2}}{2 b^{5}}-\frac{a\left(a^{2}-3 b^{2}\right) \cosh (x)^{3}}{3 b^{4}}+\frac{\left(a^{2}-3 b^{2}\right) \cosh (x)^{4}}{4 b^{3}}-\frac{a \cosh (x)^{5}}{5 b^{2}}+\frac{\cosh (x)^{6}}{6 b} \\
& \quad+\frac{\left(a^{2}-b^{2}\right)^{3} \ln (a+b \cosh (x))}{b^{7}}
\end{aligned}
$$

Result(type 3, 1038 leaves):

$$
\begin{aligned}
& \frac{5}{16 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{1}{6 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{6}}+\frac{1}{6 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{6}}+\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right)}{a-b}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}} \\
& +\frac{1}{8 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{7}{12 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b}+\frac{5}{16 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{5}} \\
& +\frac{1}{8 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}-\frac{7}{12 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b}-\frac{11}{16 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{11}{16 b\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& +\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{7}}{b^{7}(a-b)}-\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{6}}{b^{6}(a-b)}-\frac{3 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{5}}{b^{5}(a-b)} \\
& +\frac{3 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{4}}{b^{4}(a-b)}+\frac{3 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{3}}{b^{3}(a-b)}-\frac{3 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{2}}{b^{2}(a-b)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a}{b(a-b)}-\frac{7 a^{2}}{8 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{7 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a^{4}}{2 b^{5}\left(\tanh \left(\frac{x}{2}\right)+1\right)} \\
& +\frac{5 a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{9 a^{2}}{8 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{15 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{a}{5 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{5}}+\frac{a^{2}}{4 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}} \\
& +\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}-\frac{a}{5 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{5}}+\frac{a^{3}}{3 b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}+\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{a}{4 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}} \\
& -\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{6}}{b^{7}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{4}}{b^{5}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{2}}{b^{3}}+\frac{a^{4}}{2 b^{5}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}} \\
& -\frac{7 a^{2}}{8 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{7 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{a^{5}}{b^{6}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{a^{4}}{2 b^{5}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{5 a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& -\frac{9 a^{2}}{8 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{15 a}{8 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{a^{2}}{4 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}+\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}-\frac{a^{3}}{3 b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}} \\
& -\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}+\frac{a}{4 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{6}}{b^{7}}+\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{4}}{b^{5}}-\frac{3 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{2}}{b^{3}} \\
& +\frac{a^{4}}{2 b^{5}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{a^{3}}{2 b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}
\end{aligned}
$$

Problem 48: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{5}}{a+b \cosh (x)} \mathrm{d} x
$$

Optimal(type 3, 77 leaves, 3 steps):

$$
-\frac{a\left(a^{2}-2 b^{2}\right) \cosh (x)}{b^{4}}+\frac{\left(a^{2}-2 b^{2}\right) \cosh (x)^{2}}{2 b^{3}}-\frac{a \cosh (x)^{3}}{3 b^{2}}+\frac{\cosh (x)^{4}}{4 b}+\frac{\left(a^{2}-b^{2}\right)^{2} \ln (a+b \cosh (x))}{b^{5}}
$$

Result(type 3, 598 leaves):

$$
\begin{aligned}
& -\frac{3}{8 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right)}{a-b}+\frac{1}{4 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{4}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b} \\
& -\frac{3}{8 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{1}{4 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{4}}+\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b}+\frac{5}{8 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{5}{8 b\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& +\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{5}}{b^{5}(a-b)}-\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{4}}{b^{4}(a-b)}-\frac{2 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{3}}{b^{3}(a-b)} \\
& +\frac{2 \ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a^{2}}{b^{2}(a-b)}+\frac{\ln \left(a \tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right)^{2} b-a-b\right) a}{b(a-b)}+\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}+\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& -\frac{a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{3 a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{a}{3 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{4}}{b^{5}} \\
& +\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right) a^{2}}{b^{3}}+\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{a^{3}}{b^{4}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{a^{2}}{2 b^{3}\left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& -\frac{3 a}{2 b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{a}{3 b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{4}}{b^{5}}+\frac{2 \ln \left(\tanh \left(\frac{x}{2}\right)+1\right) a^{2}}{b^{3}}
\end{aligned}
$$

Problem 60: Unable to integrate problem.

$$
\int \frac{x^{3} \sinh (d x+c)^{2}}{a+b \cosh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 453 leaves, 18 steps):
$-\frac{a x^{4}}{4 b^{2}}-\frac{6 \cosh (d x+c)}{b d^{4}}-\frac{3 x^{2} \cosh (d x+c)}{b d^{2}}+\frac{6 x \sinh (d x+c)}{b d^{3}}+\frac{x^{3} \sinh (d x+c)}{b d}+\frac{x^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d}$

$$
-\frac{6 \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{4}}
$$

Result(type 8, 130 leaves):

$$
-\frac{a x^{4}}{4 b^{2}}+\frac{\left(x^{3} d^{3}-3 d^{2} x^{2}+6 d x-6\right) \mathrm{e}^{d x+c}}{2 d^{4} b}-\frac{x^{3} d^{3}+3 d^{2} x^{2}+6 d x+6}{2 d^{4} b \mathrm{e}^{d x+c}}+\int \frac{2 x^{3}\left(a^{2}-b^{2}\right) \mathrm{e}^{d x+c}}{\left(b\left(\mathrm{e}^{d x+c}\right)^{2}+2 a \mathrm{e}^{d x+c}+b\right) b^{2}} \mathrm{~d} x
$$

Problem 61: Result more than twice size of optimal antiderivative.

$$
\int \frac{x \sinh (d x+c)^{2}}{a+b \cosh (d x+c)} \mathrm{d} x
$$

Optimal(type 4, 222 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{a x^{2}}{2 b^{2}}-\frac{\cosh (d x+c)}{b d^{2}}+\frac{x \sinh (d x+c)}{b d}+\frac{x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d}-\frac{x \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d} \\
& \quad+\frac{\operatorname{poly} \log \left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{2}}-\frac{\operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{2}}
\end{aligned}
$$

Result(type 4, 861 leaves):

$$
\left.\begin{array}{rl}
-\frac{a x^{2}}{2 b^{2}} & \left.+\frac{(d x-1) \mathrm{e}^{d x+c}}{2 b d^{2}}-\frac{(d x+1) \mathrm{e}^{-d x-c}}{2 b d^{2}}+\frac{\ln \left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right) x a^{2}}{b^{2} d \sqrt{a^{2}-b^{2}}}\right) \\
& \quad \ln \left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right) x a^{2} \\
b^{2} d \sqrt{a^{2}-b^{2}} & \ln \left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right) x \\
\ln \left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right) x \ln \left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right) c a^{2} \\
d \sqrt{a^{2}-b^{2}}
\end{array}+\frac{b^{2} d^{2} \sqrt{a^{2}-b^{2}}}{}\right)
$$

$$
\begin{aligned}
& -\frac{x^{3} \ln \left(1+\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d}+\frac{3 x^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{2}}-\frac{3 x^{2} \operatorname{polylog}\left(2,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{2}} \\
& -\frac{6 x \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{3}}+\frac{6 x \operatorname{poly} \log \left(3,-\frac{b \mathrm{e}^{d x+c}}{a+\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{3}}+\frac{6 \operatorname{polylog}\left(4,-\frac{b \mathrm{e}^{d x+c}}{a-\sqrt{a^{2}-b^{2}}}\right) \sqrt{a^{2}-b^{2}}}{b^{2} d^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{\ln \left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right) c}{d^{2} \sqrt{a^{2}-b^{2}}}-\frac{\ln \left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right) c a^{2}}{b^{2} d^{2} \sqrt{a^{2}-b^{2}}}+\frac{\ln \left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right) c}{d^{2} \sqrt{a^{2}-b^{2}}}\right) \\
& +\frac{\operatorname{dilog}\left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right) a^{2}}{b^{2} d^{2} \sqrt{a^{2}-b^{2}}}-\frac{\operatorname{dilog}\left(\frac{-b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}-a}{-a+\sqrt{a^{2}-b^{2}}}\right)}{d^{2} \sqrt{a^{2}-b^{2}}}-\frac{\operatorname{dilog}\left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right) a^{2}}{b^{2} d^{2} \sqrt{a^{2}-b^{2}}} \\
& +\frac{\operatorname{dilog}\left(\frac{b \mathrm{e}^{d x+c}+\sqrt{a^{2}-b^{2}}+a}{a+\sqrt{a^{2}-b^{2}}}\right)}{d^{2} \sqrt{a^{2}-b^{2}}}-\frac{2 c \arctan \left(\frac{2 b \mathrm{e}^{d x+c}+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right) a^{2}}{b^{2} d^{2} \sqrt{-a^{2}+b^{2}}}+\frac{2 c \arctan \left(\frac{2 b \mathrm{e}^{d x+c}+2 a}{2 \sqrt{-a^{2}+b^{2}}}\right)}{d^{2} \sqrt{-a^{2}+b^{2}}}
\end{aligned}
$$

Problem 62: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (d x+c)^{2}}{a+b \cosh (d x+c)} \mathrm{d} x
$$

Optimal(type 3, 64 leaves, 4 steps):

$$
-\frac{a x}{b^{2}}+\frac{\sinh (d x+c)}{b d}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a-b} \tanh \left(\frac{c}{2}+\frac{d x}{2}\right)}{\sqrt{a+b}}\right) \sqrt{a-b} \sqrt{a+b}}{b^{2} d}
$$

Result(type 3, 176 leaves):

$$
\begin{aligned}
& \frac{2 \operatorname{arctanh}\left(\frac{(a-b) \tanh \left(\frac{c}{2}+\frac{d x}{2}\right)}{\sqrt{(a+b)(a-b)}}\right) a^{2}}{d b^{2} \sqrt{(a+b)(a-b)}}-\frac{2 \operatorname{arctanh}\left(\frac{(a-b) \tanh \left(\frac{c}{2}+\frac{d x}{2}\right)}{\sqrt{(a+b)(a-b)}}\right)}{d \sqrt{(a+b)(a-b)}}-\frac{1}{d b\left(\tanh \left(\frac{c}{2}+\frac{d x}{2}\right)+1\right)}-\frac{a \ln \left(\tanh \left(\frac{c}{2}+\frac{d x}{2}\right)+1\right)}{d b^{2}} \\
& \quad-\frac{1}{d b\left(\tanh \left(\frac{c}{2}+\frac{d x}{2}\right)-1\right)}+\frac{a \ln \left(\tanh \left(\frac{c}{2}+\frac{d x}{2}\right)-1\right)}{d b^{2}}
\end{aligned}
$$

Problem 65: Unable to integrate problem.

$$
\int \cosh \left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Optimal(type 3, 54 leaves, 1 step):

$$
\frac{x \cosh \left(a+b \ln \left(c x^{n}\right)\right)}{-b^{2} n^{2}+1}-\frac{b n x \sinh \left(a+b \ln \left(c x^{n}\right)\right)}{-b^{2} n^{2}+1}
$$

Result(type 8, 13 leaves):

$$
\int \cosh \left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Problem 66: Unable to integrate problem.

$$
\int \cosh \left(a+b \ln \left(c x^{n}\right)\right)^{4} d x
$$

Optimal(type 3, 191 leaves, 3 steps):
$\frac{24 b^{4} n^{4} x}{64 b^{4} n^{4}-20 b^{2} n^{2}+1}-\frac{12 b^{2} n^{2} x \cosh \left(a+b \ln \left(c x^{n}\right)\right)^{2}}{64 b^{4} n^{4}-20 b^{2} n^{2}+1}+\frac{x \cosh \left(a+b \ln \left(c x^{n}\right)\right)^{4}}{-16 b^{2} n^{2}+1}+\frac{24 b^{3} n^{3} x \cosh \left(a+b \ln \left(c x^{n}\right)\right) \sinh \left(a+b \ln \left(c x^{n}\right)\right)}{64 b^{4} n^{4}-20 b^{2} n^{2}+1}$
$-\frac{4 b n x \cosh \left(a+b \ln \left(c x^{n}\right)\right)^{3} \sinh \left(a+b \ln \left(c x^{n}\right)\right)}{-16 b^{2} n^{2}+1}$
Result(type 8, 15 leaves):

$$
\int \cosh \left(a+b \ln \left(c x^{n}\right)\right)^{4} \mathrm{~d} x
$$

Problem 67: Unable to integrate problem.

$$
\int x^{m} \cosh \left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Optimal(type 3, 73 leaves, 1 step):

$$
\frac{(1+m) x^{1+m} \cosh \left(a+b \ln \left(c x^{n}\right)\right)}{(1+m)^{2}-b^{2} n^{2}}-\frac{b n x^{1+m} \sinh \left(a+b \ln \left(c x^{n}\right)\right)}{(1+m)^{2}-b^{2} n^{2}}
$$

Result(type 8, 17 leaves):

$$
\int x^{m} \cosh \left(a+b \ln \left(c x^{n}\right)\right) \mathrm{d} x
$$

Problem 70: Unable to integrate problem.

$$
\int \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2} \mathrm{~d} x
$$

Optimal(type 3, 202 leaves, 8 steps):

$$
\begin{aligned}
& -\frac{x \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2}}{4}+\frac{5 x \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2}}{4 \mathrm{e}^{2 a}\left(c x^{n}\right)^{\frac{4}{n}}\left(1+\frac{1}{\mathrm{e}^{2 a}\left(c x^{n}\right)^{\frac{4}{n}}}\right)^{2}}+\frac{5 x \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2}}{12\left(1+\frac{1}{\mathrm{e}^{2 a}\left(c x^{n}\right)^{\frac{4}{n}}}\right)} \\
& \quad-\frac{5 x \operatorname{arccsch}\left(\mathrm{e}^{a}\left(c x^{n}\right)^{\frac{2}{n}}\right) \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2}}{4 \mathrm{e}^{3 a}\left(c x^{n}\right)^{\frac{6}{n}}\left(1+\frac{1}{\mathrm{e}^{2 a}\left(c x^{n}\right)^{\frac{4}{n}}}\right)^{5 / 2}}
\end{aligned}
$$

Result(type 8, 18 leaves):

$$
\int \cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)^{5 / 2} \mathrm{~d} x
$$

Problem 71: Unable to integrate problem.

$$
\int \sqrt{\cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)} \mathrm{d} x
$$

Optimal(type 3, 95 leaves, 6 steps):

Result(type 8, 18 leaves):

$$
\int \sqrt{\cosh \left(a+\frac{2 \ln \left(c x^{n}\right)}{n}\right)} d x
$$

Problem 77: Result is not expressed in closed-form.

$$
\int \mathrm{e}^{x} \operatorname{sech}(4 x)^{2} \mathrm{~d} x
$$

Optimal(type 3, 263 leaves, 22 steps):
$-\frac{\mathrm{e}^{x}}{2\left(1+\mathrm{e}^{8 x}\right)}-\frac{\ln \left(1+\mathrm{e}^{2 x}-\mathrm{e}^{x} \sqrt{2-\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{32}+\frac{\ln \left(1+\mathrm{e}^{2 x}+\mathrm{e}^{x} \sqrt{2-\sqrt{2}}\right) \sqrt{2-\sqrt{2}}}{32}-\frac{\arctan \left(\frac{-2 \mathrm{e}^{x}+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right)}{8 \sqrt{4-2 \sqrt{2}}}$

$$
\begin{aligned}
& +\frac{\arctan \left(\frac{2 \mathrm{e}^{x}+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right)}{8 \sqrt{4-2 \sqrt{2}}}-\frac{\ln \left(1+\mathrm{e}^{2 x}-\mathrm{e}^{x} \sqrt{2+\sqrt{2}}\right) \sqrt{2+\sqrt{2}}}{32}+\frac{\ln \left(1+\mathrm{e}^{2 x}+\mathrm{e}^{x} \sqrt{2+\sqrt{2}}\right) \sqrt{2+\sqrt{2}}}{32}-\frac{\arctan \left(\frac{-2 \mathrm{e}^{x}+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right)}{8 \sqrt{4+2 \sqrt{2}}} \\
& +\frac{\arctan \left(\frac{2 \mathrm{e}^{x}+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right)}{8 \sqrt{4+2 \sqrt{2}}}
\end{aligned}
$$

Result(type 7, 35 leaves):

$$
-\frac{\mathrm{e}^{x}}{2\left(1+\mathrm{e}^{8 x}\right)}+4\left(\sum_{_R=R o o t O f\left(281474976710656 _z^{8}+1\right)} R \ln \left(\mathrm{e}^{x}+64 _R\right)\right)
$$

Problem 78: Unable to integrate problem.

$$
\int F^{c(b x+a)} \operatorname{sech}(e x+d)^{2} \mathrm{~d} x
$$

Optimal (type 5, 68 leaves, 1 step):

$$
\frac{4 \mathrm{e}^{2 e x+2 d} F^{c(b x+a)} \text { hypergeom }\left(\left[2,1+\frac{b c \ln (F)}{2 e}\right],\left[2+\frac{b c \ln (F)}{2 e}\right],-\mathrm{e}^{2 e x+2 d}\right)}{b c \ln (F)+2 e}
$$

Result(type 8, 20 leaves):

$$
\int F^{c(b x+a)} \operatorname{sech}(e x+d)^{2} \mathrm{~d} x
$$

Problem 86: Unable to integrate problem.

$$
\int\left(\frac{x}{\cosh (x)^{5 / 2}}-\frac{x}{3 \sqrt{\cosh (x)}}\right) \mathrm{d} x
$$

Optimal(type 3, 16 leaves, 2 steps):

$$
\frac{2 x \sinh (x)}{3 \cosh (x)^{3 / 2}}+\frac{4}{3 \sqrt{\cosh (x)}}
$$

Result(type 8, 16 leaves):

$$
\int\left(\frac{x}{\cosh (x)^{5 / 2}}-\frac{x}{3 \sqrt{\cosh (x)}}\right) \mathrm{d} x
$$

Problem 87: Unable to integrate problem.

$$
\int\left(\frac{x^{2}}{\cosh (x)^{3 / 2}}+x^{2} \sqrt{\cosh (x)}\right) d x
$$

Optimal(type 4, 47 leaves, 3 steps):

$$
-\frac{16 \mathrm{I} \sqrt{\cosh \left(\frac{x}{2}\right)^{2}} \text { EllipticE }\left(I \sinh \left(\frac{x}{2}\right), \sqrt{2}\right)}{\cosh \left(\frac{x}{2}\right)}+\frac{2 x^{2} \sinh (x)}{\sqrt{\cosh (x)}}-8 x \sqrt{\cosh (x)}
$$

Result (type 8, 19 leaves):

$$
\int\left(\frac{x^{2}}{\cosh (x)^{3 / 2}}+x^{2} \sqrt{\cosh (x)}\right) \mathrm{d} x
$$

Test results for the 25 problems in " 6.2 .7 hyper^m (a+b cosh^n)^p.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{4}}{a-a \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 16 leaves, 3 steps):

$$
\frac{x}{2 a}-\frac{\cosh (x) \sinh (x)}{2 a}
$$

Result (type 3, 77 leaves):

$$
\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)+1\right)}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 a}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}-\frac{1}{2 a\left(\tanh \left(\frac{x}{2}\right)-1\right)}-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 a}
$$

Problem 2: Result unnecessarily involves higher level functions.

$$
\int \frac{\sinh (x)^{2}}{a-a \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 1, 6 leaves, 2 steps):

$$
-\frac{x}{a}
$$

Result(type 3, 10 leaves):

$$
-\frac{2 \operatorname{arctanh}\left(\tanh \left(\frac{x}{2}\right)\right)}{a}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{5}}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 44 leaves, 4 steps):

$$
-\frac{(a+2 b) \cosh (x)}{b^{2}}+\frac{\cosh (x)^{3}}{3 b}+\frac{(a+b)^{2} \arctan \left(\frac{\cosh (x) \sqrt{b}}{\sqrt{a}}\right)}{b^{5 / 2} \sqrt{a}}
$$

Result(type 3, 213 leaves):

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{\sinh (x)^{2}}{a+b \cosh (x)^{2}} d x
$$

Optimal (type 3, 31 leaves, 4 steps):

$$
\frac{x}{b}-\frac{\operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right) \sqrt{a+b}}{b \sqrt{a}}
$$

Result (type 3, 188 leaves):

$$
\frac{\sqrt{a} \ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2 b \sqrt{a+b}}-\frac{\sqrt{a} \ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2 b \sqrt{a+b}}
$$

$$
+\frac{\ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2 \sqrt{a} \sqrt{a+b}}-\frac{\ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2 \sqrt{a} \sqrt{a+b}}
$$

$$
-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{b}
$$

$$
\begin{aligned}
& +\frac{1}{3 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{3}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}}-\frac{a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{3}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{1}{3 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{3}} \\
& -\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{a}{b^{2}\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{3}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)}
\end{aligned}
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 21 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right)}{\sqrt{a} \sqrt{a+b}}
$$

Result (type 3, 80 leaves):

$$
-\frac{\ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2 \sqrt{a} \sqrt{a+b}}+\frac{\ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2 \sqrt{a} \sqrt{a+b}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(x)^{4}}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 49 leaves, 4 steps):

$$
\frac{(a+2 b) \operatorname{coth}(x)}{(a+b)^{2}}-\frac{\operatorname{coth}(x)^{3}}{3(a+b)}+\frac{b^{2} \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right)}{(a+b)^{5 / 2} \sqrt{a}}
$$

Result(type 3, 179 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{x}{2}\right)^{3} a}{24(a+b)^{2}}-\frac{\tanh \left(\frac{x}{2}\right)^{3} b}{24(a+b)^{2}}+\frac{3 \tanh \left(\frac{x}{2}\right) a}{8(a+b)^{2}}+\frac{7 \tanh \left(\frac{x}{2}\right) b}{8(a+b)^{2}}-\frac{1}{24(a+b) \tanh \left(\frac{x}{2}\right)^{3}}+\frac{3 a}{8(a+b)^{2} \tanh \left(\frac{x}{2}\right)}+\frac{7 b}{8(a+b)^{2} \tanh \left(\frac{x}{2}\right)^{2}} \\
& -\frac{b^{2} \ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2(a+b)^{5 / 2} \sqrt{a}}+\frac{b^{2} \ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2(a+b)^{5 / 2 \sqrt{a}}}
\end{aligned}
$$

Problem 8: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{csch}(x)^{6}}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 77 leaves, 4 steps):

$$
-\frac{\left(a^{2}+3 a b+3 b^{2}\right) \operatorname{coth}(x)}{(a+b)^{3}}+\frac{(2 a+3 b) \operatorname{coth}(x)^{3}}{3(a+b)^{2}}-\frac{\operatorname{coth}(x)^{5}}{5(a+b)}-\frac{b^{3} \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right)}{(a+b)^{7 / 2} \sqrt{a}}
$$

Result(type 3, 309 leaves):

$$
\begin{aligned}
& -\frac{\tanh \left(\frac{x}{2}\right)^{5} a^{2}}{160(a+b)^{3}}-\frac{\tanh \left(\frac{x}{2}\right)^{5} a b}{80(a+b)^{3}}-\frac{\tanh \left(\frac{x}{2}\right)^{5} b^{2}}{160(a+b)^{3}}+\frac{5 \tanh \left(\frac{x}{2}\right)^{3} a^{2}}{96(a+b)^{3}}+\frac{7 \tanh \left(\frac{x}{2}\right)^{3} a b}{48(a+b)^{3}}+\frac{3 \tanh \left(\frac{x}{2}\right)^{3} b^{2}}{32(a+b)^{3}}-\frac{5 \tanh \left(\frac{x}{2}\right) a^{2}}{16(a+b)^{3}}-\frac{\tanh \left(\frac{x}{2}\right) a b}{(a+b)^{3}} \\
& -\frac{19 \tanh \left(\frac{x}{2}\right) b^{2}}{16(a+b)^{3}}-\frac{1}{160(a+b) \tanh \left(\frac{x}{2}\right)^{5}}+\frac{5 a}{96(a+b)^{2} \tanh \left(\frac{x}{2}\right)^{3}}+\frac{3 b}{32(a+b)^{2} \tanh \left(\frac{x}{2}\right)^{3}}-\frac{5 a^{2}}{16(a+b)^{3} \tanh \left(\frac{x}{2}\right)}-\frac{a b}{(a+b)^{3} \tanh \left(\frac{x}{2}\right)^{2}} \\
& -\frac{19 b^{2}}{16(a+b)^{3} \tanh \left(\frac{x}{2}\right)}+\frac{b^{3} \ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2(a+b)^{7 / 2} \sqrt{a}}-\frac{b^{3} \ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2(a+b)^{7 / 2} \sqrt{a}}
\end{aligned}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{\cosh (x)^{4}}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 47 leaves, 5 steps):

$$
-\frac{(2 a-b) x}{2 b^{2}}+\frac{\cosh (x) \sinh (x)}{2 b}+\frac{a^{3 / 2} \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right)}{b^{2} \sqrt{a+b}}
$$

Result(type 3, 187 leaves):

$$
\begin{aligned}
& -\frac{a^{3 / 2} \ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2 b^{2} \sqrt{a+b}}+\frac{a^{3 / 2} \ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2 b^{2} \sqrt{a+b}}-\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)^{2}} \\
& \quad+\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)+1\right)}-\frac{a \ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{b^{2}}+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)+1\right)}{2 b}+\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)^{2}}+\frac{1}{2 b\left(\tanh \left(\frac{x}{2}\right)-1\right)}+\frac{1}{2 \ln \left(\tanh \left(\frac{x}{2}\right)-1\right)} \\
& \quad-\frac{\ln \left(\tanh \left(\frac{x}{2}\right)-1\right)}{2 b}
\end{aligned}
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\operatorname{sech}(x)^{2}}{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 3, 30 leaves, 3 steps):

$$
-\frac{b \operatorname{arctanh}\left(\frac{\sqrt{a} \tanh (x)}{\sqrt{a+b}}\right)}{a^{3 / 2} \sqrt{a+b}}+\frac{\tanh (x)}{a}
$$

Result(type 3, 101 leaves):

$$
\frac{b \ln \left(-\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}-\sqrt{a+b}\right)}{2 a^{3 / 2} \sqrt{a+b}}-\frac{b \ln \left(\sqrt{a+b} \tanh \left(\frac{x}{2}\right)^{2}+2 \tanh \left(\frac{x}{2}\right) \sqrt{a}+\sqrt{a+b}\right)}{2 a^{3 / 2} \sqrt{a+b}}+\frac{2 \tanh \left(\frac{x}{2}\right)}{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}
$$

Problem 12: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\cosh (x)^{2}+1} \mathrm{~d} x
$$

Optimal(type 3, 13 leaves, 2 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{\tanh (x) \sqrt{2}}{2}\right) \sqrt{2}}{2}
$$

Result(type 3, 85 leaves):

$$
\frac{\sqrt{2} \ln \left(\frac{\tanh \left(\frac{x}{2}\right)^{2}+\tanh \left(\frac{x}{2}\right) \sqrt{2}+1}{\tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right) \sqrt{2}+1}\right)}{8}-\frac{\sqrt{2} \ln \left(\frac{\tanh \left(\frac{x}{2}\right)^{2}-\tanh \left(\frac{x}{2}\right) \sqrt{2}+1}{\tanh \left(\frac{x}{2}\right)^{2}+\tanh \left(\frac{x}{2}\right) \sqrt{2}+1}\right)}{8}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{\left(1-\cosh (x)^{2}\right)^{2}} d x
$$

Optimal(type 3, 9 leaves, 3 steps):

$$
\operatorname{coth}(x)-\frac{\operatorname{coth}(x)^{3}}{3}
$$

Result(type 3, 31 leaves):

$$
-\frac{\tanh \left(\frac{x}{2}\right)^{3}}{24}+\frac{3 \tanh \left(\frac{x}{2}\right)}{8}-\frac{1}{24 \tanh \left(\frac{x}{2}\right)^{3}}+\frac{3}{8 \tanh \left(\frac{x}{2}\right)}
$$

Problem 14: Result more than twice size of optimal antiderivative.

$$
\int \sqrt{a+b \cosh (x)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 47 leaves, 2 steps):

$$
\frac{\sqrt{-\sinh (x)^{2}} \text { EllipticE }\left(\cosh (x), \sqrt{-\frac{b}{a}}\right) \sqrt{a+b \cosh (x)^{2}}}{\sinh (x) \sqrt{1+\frac{b \cosh (x)^{2}}{a}}}
$$

Result(type 4, 113 leaves):

$$
\frac{\sqrt{\frac{a+b \cosh (x)^{2}}{a}} \sqrt{-\sinh (x)^{2}}\left(a \operatorname{EllipticF}\left(\cosh (x) \sqrt{-\frac{b}{a}}, \sqrt{-\frac{a}{b}}\right)+b \operatorname{EllipticF}\left(\cosh (x) \sqrt{-\frac{b}{a}}, \sqrt{-\frac{a}{b}}\right)-b \operatorname{EllipticE}\left(\cosh (x) \sqrt{-\frac{b}{a}}, \sqrt{-\frac{a}{b}}\right)\right)}{\sqrt{-\frac{b}{a}} \sinh (x) \sqrt{a+b \cosh (x)^{2}}}
$$

Problem 18: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \cosh (x)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 182 leaves, 8 steps):
$\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 3}-b^{1 / 3}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 3}+b^{1 / 3}}}\right)}{3 a^{2 / 3} \sqrt{a^{1 / 3}-b^{1 / 3} \sqrt{a^{1 / 3}+b^{1 / 3}}}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 3}+(-1)^{1 / 3} b^{1 / 3}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 3}-(-1)^{1 / 3} b^{1 / 3}}}\right)}{3 a^{2 / 3} \sqrt{a^{1 / 3}-(-1)^{1 / 3} b^{1 / 3}} \sqrt{a^{1 / 3}+(-1)^{1 / 3} b^{1 / 3}}}}$

$$
+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 3}-(-1)^{2 / 3} b^{1 / 3}} \tanh \left(\frac{x}{2}\right)}{\left.\sqrt{a^{1 / 3}+(-1)^{2 / 3} b^{1 / 3}}\right)}\right.}{3 a^{2 / 3} \sqrt{a^{1 / 3}-(-1)^{2 / 3} b^{1 / 3}} \sqrt{a^{1 / 3}+(-1)^{2 / 3} b^{1 / 3}}}
$$

Result(type 7, 99 leaves):

$$
\frac{\left.\sum^{R=R o o t O f\left((a-b) Z^{6}+(-3 a-3 b)\right.} Z^{4}+(3 a-3 b) Z^{2}-a-b\right)-R^{5} a-{ }_{-} R^{5} b-2_{-} R^{3} a-2_{-} R^{3} b+{ }_{-} R a-{ }_{-} R b}{} \frac{\left(-_{-} R^{4}+2_{-} R^{2}-1\right) \ln \left(\tanh \left(\frac{x}{2}\right)-{ }_{-} R\right)}{3}
$$

Problem 19: Result more than twice size of optimal antiderivative.

$$
\int \frac{1}{1-\cosh (x)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 71 leaves, 7 steps):

$$
-\frac{2(-1)^{1 / 4} \arctan \left(\frac{(-1)^{3 / 4} \tanh \left(\frac{x}{2}\right) 3^{3 / 4}}{3}\right) 3^{1 / 4}}{3\left(1-(-1)^{2 / 3}\right)}-\frac{2(-1)^{1 / 4} \operatorname{arctanh}\left(\frac{(-1)^{3 / 4} \tanh \left(\frac{x}{2}\right) 3^{3 / 4}}{3}\right) 3^{1 / 4}}{3\left(1+(-1)^{1 / 3}\right)}-\frac{\sinh (x)}{3(1-\cosh (x))}
$$

Result(type 3, 211 leaves):
$\left.\frac{3^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} 3^{3 / 4} \tanh \left(\frac{x}{2}\right)}{3}-1\right)}{6}+\frac{3^{1 / 4} \sqrt{2} \ln \left(\frac{\tanh \left(\frac{x}{2}\right)^{2}+3^{1 / 4} \tanh \left(\frac{x}{2}\right) \sqrt{2}+\sqrt{3}}{\tanh \left(\frac{x}{2}\right)^{2}-3^{1 / 4} \tanh \left(\frac{x}{2}\right) \sqrt{2}+\sqrt{3}}\right)}{12}+\frac{3^{1 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} 3^{3} / 4}{} \tanh \left(\frac{x}{2}\right)\right.}{3}+1\right)$
$-\frac{3^{3 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} 3^{3 / 4} \tanh \left(\frac{x}{2}\right)}{3}-1\right)}{18}-\frac{3^{3 / 4} \sqrt{2} \ln (}{18}+\frac{3^{3 / 4} \sqrt{2} \arctan \left(\frac{\sqrt{2} 3^{3 / 4} \tanh \left(\frac{x}{2}\right)}{3}+1\right)}{3 \tanh \left(\frac{x}{2}\right)}$

Problem 20: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \cosh (x)^{5}} \mathrm{~d} x
$$

Optimal(type 3, 312 leaves, 12 steps):
$\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 5}-b^{1 / 5}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 5}+b^{1 / 5}}}\right)}{5 a^{4 / 5} \sqrt{a^{1 / 5}-b^{1 / 5}} \sqrt{a^{1 / 5}+b^{1 / 5}}}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 5}+(-1)^{1 / 5} b^{1 / 5}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 5}-(-1)^{1 / 5} b^{1 / 5}}}\right)}{5 a^{4 / 5} \sqrt{a^{1 / 5}-(-1)^{1 / 5} b^{1 / 5} \sqrt{a^{1 / 5}+(-1)^{1 / 5} b^{1 / 5}}}}$

$$
+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 5}-(-1)^{2 / 5} b^{1 / 5}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 5}+(-1)^{2 / 5} b^{1 / 5}}}\right)}{5 a^{4 / 5} \sqrt{a^{1 / 5}-(-1)^{2 / 5} b^{1 / 5}} \sqrt{a^{1 / 5}+(-1)^{2 / 5} b^{1 / 5}}}+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 5}+(-1)^{3 / 5} b^{1 / 5}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 5}-(-1)^{3 / 5} b^{1 / 5}}}\right)}{5 a^{4 / 5} \sqrt{a^{1 / 5}-(-1)^{3 / 5} b^{1 / 5} \sqrt{a^{1 / 5}+(-1)^{3 / 5} b^{1 / 5}}}}
$$

$$
+\frac{2 \operatorname{arctanh}\left(\frac{\sqrt{a^{1 / 5}-(-1)^{4 / 5} b^{1 / 5}} \tanh \left(\frac{x}{2}\right)}{\sqrt{a^{1 / 5}+(-1)^{4 / 5} b^{1 / 5}}}\right)}{5 a^{4 / 5} \sqrt{a^{1 / 5}-(-1)^{4 / 5} b^{1 / 5}} \sqrt{a^{1 / 5}+(-1)^{4 / 5} b^{1 / 5}}}
$$

Result(type 7, 155 leaves):
$\frac{1}{5}($

Problem 21: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \cosh (x)^{6}} \mathrm{~d} x
$$

Optimal(type 3, 109 leaves, 7 steps):

$$
\frac{\operatorname{arctanh}\left(\frac{a^{1 / 6} \tanh (x)}{\sqrt{a^{1 / 3}+b^{1 / 3}}}\right)}{3 a^{5 / 6} \sqrt{a^{1 / 3}+b^{1 / 3}}}+\frac{\operatorname{arctanh}\left(\frac{a^{1 / 6} \tanh (x)}{\sqrt{a^{1 / 3}-(-1)^{1 / 3} b^{1 / 3}}}\right)}{3 a^{5 / 6} \sqrt{a^{1 / 3}-(-1)^{1 / 3} b^{1 / 3}}}+\frac{\operatorname{arctanh}\left(\frac{a^{1 / 6} \tanh (x)}{\sqrt{a^{1 / 3}+(-1)^{2 / 3} b^{1 / 3}}}\right)}{3 a^{5 / 6} \sqrt{a^{1 / 3}+(-1)^{2 / 3} b^{1 / 3}}}
$$

Result(type 7, 176 leaves):
$\frac{1}{6}$

$$
\begin{aligned}
& \sum \\
& __{-}=\operatorname{RootOf}\left((a-b) Z^{10}+(-5 a-5 b) Z^{8}+(10 a-10 b) Z^{6}+(-10 a-10 b) Z^{4}+(5 a-5 b) Z^{2}-a-b\right) \\
& \left.\frac{\left(-_{-} R^{8}+4_{-} R^{6}-6_{-} R^{4}+4_{-} R^{2}-1\right) \ln \left(\tanh \left(\frac{x}{2}\right)-_{-} R\right)}{R_{-}^{9} a-R_{-} R^{9} b-4_{-} R^{7} a-4_{-} R^{7} b+6_{-} R^{5} a-6_{-} R^{5} b-4_{-} R^{3} a-4 R^{3} b+{ }_{-} R a-_{-} R b}\right)
\end{aligned}
$$

$\underbrace{}_{-} \sum_{R=\operatorname{Root} O f((a+b)} Z^{12}+(-6 a+6 b) Z^{10}+(15 a+15 b) Z^{8}+(-20 a+20 b) _Z^{6}+(15 a+15 b) \quad Z^{4}+(-6 a+6 b) _Z^{2}+a+b)$

$$
\left.\frac{\left(-_{-} R^{10}+5_{-} R^{8}-10_{-} R^{6}+1_{__{-}} R^{4}-5_{-} R^{2}+1\right) \ln \left(\tanh \left(\frac{x}{2}\right)-_{-} R\right)}{{ }_{-} R^{11} a+{ }_{-} R^{11} b-5_{-} R^{9} a+5_{-} R^{9} b+10_{-} R^{7} a+10_{-} R^{7} b-10_{-} R^{5} a+10_{-} R^{5} b+5_{-} R^{3} a+5_{-} R^{3} b-_{-} R a+{ }_{-} R b}\right)
$$

Problem 22: Result is not expressed in closed-form.

$$
\int \frac{1}{a+b \cosh (x)^{8}} \mathrm{~d} x
$$

Optimal(type 3, 169 leaves, 9 steps):

Result(type 7, 232 leaves):
$\frac{1}{8} \sum_{_R=\operatorname{RootOf}\left((a+b) _Z^{16}+(-8 a+8 b) _Z^{14}+(28 a+28 b) _Z^{12}+(-56 a+56 b) Z^{10}+(70 a+70 b) _Z^{8}+(-56 a+56 b) _Z^{6}+(28 a+28 b) _Z^{4}+(-8 a+8 b) _Z^{2}+a+b\right)}\left(\left(-R^{14}\right.\right.$

$$
\left.\left.+7_{-} R^{12}-21_{-} R^{10}+35 R^{8}-35 R_{-}^{6}+21_{-} R^{4}-7_{-} R^{2}+1\right) \ln \left(\tanh \left(\frac{x}{2}\right)-__{-} R\right)\right) /\left(__{-}^{15} a+_{-} R^{15} b-7 R_{-}^{13} a+7 R_{-}^{13} b+21 R^{11} a+21 R^{11} b\right.
$$

$$
\left.\left.-35 __{-} R^{9} a+35 R^{9} b+35 R^{7} a+35 R_{-}^{7} b-21_{-} R^{5} a+21_{-} R^{5} b+7_{-} R^{3} a+7_{-} R^{3} b-{ }_{-} R a+{ }_{-} R b\right)\right)
$$

Problem 23: Result is not expressed in closed-form.

Optimal(type 3, 160 leaves, 11 steps):

$$
\frac{\sinh (x)}{5(1+\cosh (x))}-\frac{2 \arctan \left(\frac{\tanh \left(\frac{x}{2}\right)}{\sqrt{\frac{-1+(-1)^{1 / 5}}{1+(-1)^{1 / 5}}}}\right)}{5 \sqrt{-1+(-1)^{2 / 5}}}+\frac{2 \operatorname{arctanh}\left(\sqrt{\frac{1-(-1)^{4 / 5}}{1+(-1)^{4 / 5}}} \tanh \left(\frac{x}{2}\right)\right)}{5 \sqrt{1+(-1)^{3 / 5}}}
$$

$$
-\frac{2 \arctan \left(\sqrt{\frac{-1-(-1)^{3 / 5}}{1-(-1)^{3 / 5}}} \tanh \left(\frac{x}{2}\right)\right) \sqrt{\frac{-1-(-1)^{3 / 5}}{1-(-1)^{3 / 5}}}}{5\left(1+(-1)^{3 / 5}\right)}+\frac{2 \operatorname{arctanh}\left(\sqrt{\frac{1-(-1)^{2 / 5}}{1+(-1)^{2 / 5}}} \tanh \left(\frac{x}{2}\right)\right)}{5 \sqrt{1-(-1)^{4 / 5}}}
$$

Result(type 7, 61 leaves):

$$
\frac{\tanh \left(\frac{x}{2}\right)}{5}+\frac{\left.\sum_{R=\operatorname{RootOf}(5} Z^{8}+10 \quad Z^{4}+1\right)}{}
$$

Problem 25: Result is not expressed in closed-form.

$$
\int \frac{\tanh (x)^{3}}{a+b \cosh (x)^{3}} \mathrm{~d} x
$$

Optimal(type 3, 112 leaves, 11 steps):
$\frac{\ln (\cosh (x))}{a}+\frac{b^{2 / 3} \ln \left(a^{1 / 3}+b^{1 / 3} \cosh (x)\right)}{3 a^{5 / 3}}-\frac{b^{2 / 3} \ln \left(a^{2 / 3}-a^{1 / 3} b^{1 / 3} \cosh (x)+b^{2 / 3} \cosh (x)^{2}\right)}{6 a^{5 / 3}}-\frac{\ln \left(a+b \cosh (x)^{3}\right)}{3 a}+\frac{\operatorname{sech}(x)^{2}}{2 a}$

$$
-\frac{b^{2 / 3} \arctan \left(\frac{\left(a^{1 / 3}-2 b^{1 / 3} \cosh (x)\right) \sqrt{3}}{3 a^{1 / 3}}\right) \sqrt{3}}{3 a^{5 / 3}}
$$

Result(type 7, 149 leaves):
$\left.\sum_{R=\operatorname{RootOf}\left((a-b) Z^{3}+(-3 a-3 b)\right.} Z^{2}+(3 a-3 b) \quad Z-a-b\right) \quad \frac{\left({ }_{-} R^{2} a-_{-} R^{2} b-2_{-} R a-4 _R b+a+b\right) \ln \left(\tanh \left(\frac{x}{2}\right)^{2}-{ }_{-} R\right)}{R^{2} a-R^{2} b-2 _R a-2 _R b+a-b}$

$$
+\frac{\ln \left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}{a}-\frac{2}{a\left(\tanh \left(\frac{x}{2}\right)^{2}+1\right)}
$$

Summary of Integration Test Results
225 integration problems

A - 121 optimal antiderivatives
B - 61 more than twice size of optimal antiderivatives
C - 4 unnecessarily complex antiderivatives
D - 39 unable to integrate problems
E - O integration timeouts

